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Carbon Monitoring System
Biomass Pilot Project

Objectives:

< Develop prototype data products of national biomass (and carbon storage/
change) that can be assessed with respect to how they meet the nation’s need
for monitoring (also reporting and verification) of carbon inventories.

<+ Demonstrate our readiness to produce a consistent global biomass/carbon
stock distribution using the existing in situ and satellite observations to meet the
monitoring (MRV) requirements.

Outline:
*»* National Data Processing Activities

s Development of Methodology

¢ Regional Results and Products

* Validation and Uncertainty Analysis



Terrestrial Biomass Pilot Project

Goal:

Provide geospatially explicit, consistent estimates of aboveground
terrestrial vegetation biomass and carbon storage for the U.S. by
combining advanced satellite products with ground observations and
evaluate how well these estimates meet the nation’s need for
monitoring carbon storage and changes in carbon storage.

Objectives:

< Develop prototype data products of national and global biomass
(and carbon storage/change) that can be assessed with respect to

how they meet the nation’s need for monitoring (also reporting and
verification) of carbon inventories.

<+ Demonstrate our readiness to produce a consistent global biomass/
carbon stock distribution using the existing in situ and satellite
observations to meet the monitoring (MRV) requirements.




Terrestrial Biomass Pilot Project

Objectives for Near-Term (first “18 mos.):

< Estimate aboveground biomass by combining data from several different
satellites with ground data.

% Assess the accuracy of derived estimates by using Forest Inventory and
Analysis (FIA) and other high-quality forest carbon/biomass inventory data.

“» Produce a continental U.S. map of above-ground biomass, fully mapping
errors and uncertainties

%+ Evaluate the likely improvements that could be achieved using data from
future missions.

“» Demonstrate how well biomass can be quantified with high-quality remotely
sensed data taken at fine spatial resolution for selected sites representative of
U.S. forest types and conditions.

% Develop the steps for a global forest biomass product.

= A best possible product with what we have available now . ..



Mapping Biomass

Forest biomass varies over the landscape as a result of several factors: Production
(photosynthesis) Consumption (respiration), mortality, recruitment, harvest, and
herbivory.

Forest biomass changes as a result of factors such as: succession, silviculture,
harvesting, clearing, natural disturbance (pest, fire, wind, etc.), and climate
pollutants.

Forest biomass is a useful measure to assess variations of structural and functional
attributes over a wide range of environments that can be used in models.

Environmental variables (soil, climate, and topography) do not predict forest
biomass accurately.

Systematic statistically designed sampling can provide regional and national scale
carbon stock and changes, but it cannot be applied everywhere (e.g. tropics) and
as frequently as needed.



Terrestrial Biomass Pilot Project:
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Satellite and In Situ Observations

LANDSAT
MODIS ALOS PALSAR ICESat
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Continental HH US mosaic
full resolution: 90 m

Above 40 degrees, ALOS observations switch from every orbit to every other orbit.
There is less overlap between images, and some banding at edge is introduced.
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250-m LAI derived from MODIS

* MODIS monthly LAl Mosaic is provided at 250 m resolution
* Three years (2004-2006) of MODIS data were processed to improve image quality
* LAl estimation was implemented using the NLCD land cover map.

MODIS Summer Mean LAI (2004-2006)



30-m LAl derived from Landsat and NLCD

Normalized Frequency (x 100)

LAI Difference

LAl difference between a 3-band inversion and
2-band inversion for pixels classified as DBF
and ENF for California. The NLCD 2001 map is
used to classify the forest pixels.




H

ICESAT GLAS Forest Height Metric

lorey = N

N
S BA,h,

i=1

S BA,

i=1

Predicted vs. Observed Lorey’s Height (m)

Broadleaf Sites
] (e
R2=0.83 RMSE=3.3 N=95 . e .4 7 Study Sites
] yod 2" |® Bartlett
® | @ Amazon

Predicted vs. Observed Lorey’s Height (m)
Needleleaf Sites

" R2=0.79 RMSE=4.9 N=389

Seo 37, |Study Sites
f\. ."'."’,."‘ ® gegcm
o ..l; }”'_.-.'

® Tahoe
B / @ Tennessee
'-:..avV’ e :’V .

.o
- ®
ey

........................... TR ok
o X Y

W
” on"'u
.

o.'.

: basal area weighted height (crown weighted height)

(Lefsky et al., 2010)§

GLAS Validation (Sean Healey, USDA)

FIA Plot Biomass (Mg/ha)

800

700

600

500

400

300

200

100

<300m centerpoint to centerpoint

y = 22.924¢00855x
R? = 0.6565

R2=0.66 /

*
. * ¢ /
IS oo
- y ¢
— e%¢ : : : : : :
5 10 15 20 25 30 35 40

GLAS Lorey’s Height (m)




Lorey’s Height Biomass Allometry

At this time, we are estimating aboveground biomass stratified by softwood and hardwood
composition (for dominant individuals)

Lefsky et al. Unpublished

AGB (Softwood)=0.3177*H18%
AGB (Hardwood)=1.179*H1->39 Wood Density Correction of Allometry

W

FIA Hardwood Plots
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Spatial Blomass Estlmator

Spatial Biomass I ¢
Estimator

Prog
* Non Parametric Models: / ]
— Coloring by numbers (use of land cover maps)

— Image Segmentation Approach (Lefsky et al., 2010;
Mitchard et al., 2011)

— Decision Rule, Random Forest (Saatchi et al., 2007;
Kellndorfer et al., 2010)

— Maximum Entropy Approach (Saatchi et al., PNAS
2011)

e Parametric Models:

=
1 )

AGB = f (VI, SAR, SRTM)




Parametric Model

PALSAR HH PALSAR HV LAl Summer LAl Winter

0.35 - 0.06 -— 5 : : : : : 7 : : : :

031 0.05 | 6
:g 0.25 :g 0oal . B 5|
E o2 £ _ . <
T > 0.03 g 3
L o015 I = k=
0 ) 3 b=
O Q 0.2 %)
2 o 3

005" o 1

0 0 —Td0 250 56040 566 500700 0 o30S0 a0 560 BT 00 0 100 200 300 400 500 600
AGB (Mg/ha) AGB (Mg/ha) AGB (Mg/ha) AGB (Mg/ha)
600 1 1 T= T

R’ =0.54 _
RMSE = 119.8 Mg/ha -
[ Bias =-21.7 Mg/ha . i

A N Bi
AGB* = ay+SS a;XP
|

(62
o
o

wol. . ... o4 | X={HH,HV SRTM - NED LAl LAl , LAl ; LAl ;, Slope}

.
T :’ ‘. Phase 2/Phase 3 Plot Design

300

200 | "%

100 |-

Model Estimated AGB (Mg/ha)

0 ".:"-'|:.T="-'-,.- a . = . ! )
0 100 200 300 400 500 600
FIA Estimated AGB (Mg/ha)

Spatial Resolution or Remote Sensing Data ( 0.81 ha)



Maximum Entropy Model

3

Statistical Model
Biomass Estimator
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A probabilistic framework

2. Develop incomplete empirical probability
distribution based on the occurrences

3.  Approximate with a probability distribution of
maximum entropy

4. Use environmental variables as constraints

5. Avrule classifier to produce forest biomass map

Sample Probability
Space




National Biomass Estimation
250 m (6.25 ha) Spatial Resolution

AGLB Mg/ha
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National Biomass Estimation Uncertainty
250 m Spatial Resolution

0% 25% 50% 75%



Non-parametric Model
Implementation

SRTM-NED NLCD Layer

1/4/12




NLCD Homogeneity Index
0 62 29 10

8 arcsecond pixel size
— Use majority rule to determine

class of aggregate pixel 125 307 142 >4

— Create a layer which has the 375 236 17 9

number of unique NLCD 62.5 213 114 40

classes found within this pixel 87.5 183 88 35

* Create a new samples 125 288 150 77

spreadsheet containing only 175 238 128 66

FIA samples whe(e there.was 595 206 130 70

one unique class in the pixel. EERE 108 -

— Significant reduction in the o 109 74 47

data 375 84 56 35

— Should we train with this data, " ; ;
or only validate with this data? > 0 >3 3

475 55 45 32

500+ 120 94 65



R® = 0.51
RMSE = 125.2 Mg/ha
Bias = 14.2 Mg/ha
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Maxent Product at ~ 90 m

R’ = 0.69 ,
500 | RSME = 82.5 Mg/ha
Bias = 5.7'"Mg/ha .
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Maxent with FIA Samples
Percent Error (8sec)




Sensitivity of Estimator to

Added random noise to:

— ALOS HH, HV
— LAI (spring, summer, fall, winter)
Used a KP-style noise model:
— X*is the noisy version of X.
— n(0,1) is a sample from a Gaussian
distribution with unit variance and zero mean.
— Itrieda=0.2and 0.3

X =X[l+a*n0,1)]

no noise
alos hh; 0.2
alos hh; 0.3
alos hv; 0.2
alos hv; 0.3
lai fall; 0.2
lai fall; 0.3
lai spring; 0.2
lai spring; 0.3
lai summer; 0.2
lai summer; 0.3
lai winter; 0.2
lai winter; 0.3

Errors

Jﬁ
> Spatial Biomass :
: Estimator pro
r2 bias rms
0.46 8.50 135.60
047 9.70 134.80
0.47 8.0 133.90
0.46 9.20 135.20
047 8.50 134.40
0.46 8.80 135.30
0.48 9.50 133.30
048 8.30 133.10
046 7.20 135.30
0.46 8.00 135.60
048 7.90 133.10
047 7.10 134.60
0.45 8.40 136.20




Maxent Biomass (‘IO6 x MQg)

Validation at the County Scale
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Sources of Error:

1. Forest Area Estimate
2. Maxent Prediction

3. FIA sub-sampling error
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Summary

. Combination of Lidar and satellite imagery can be used to model
biomass distribution

. Higher spatial resolution of 1-ha is the best to reduce errors
associated with surface heterogeneity and smaller plot size

. Large errors and small bias exists at pixel scale biomass
estimation

. Aggregated results on the US County scale agrees with the FIA
data.

. Uncertainty in biomass estimation is a function of methodology,
location of plot data, allometry, forest area

. The accuracy at county scale appears to be enough to estimate
biomass changes at the annual scale, but needs to be verified.




