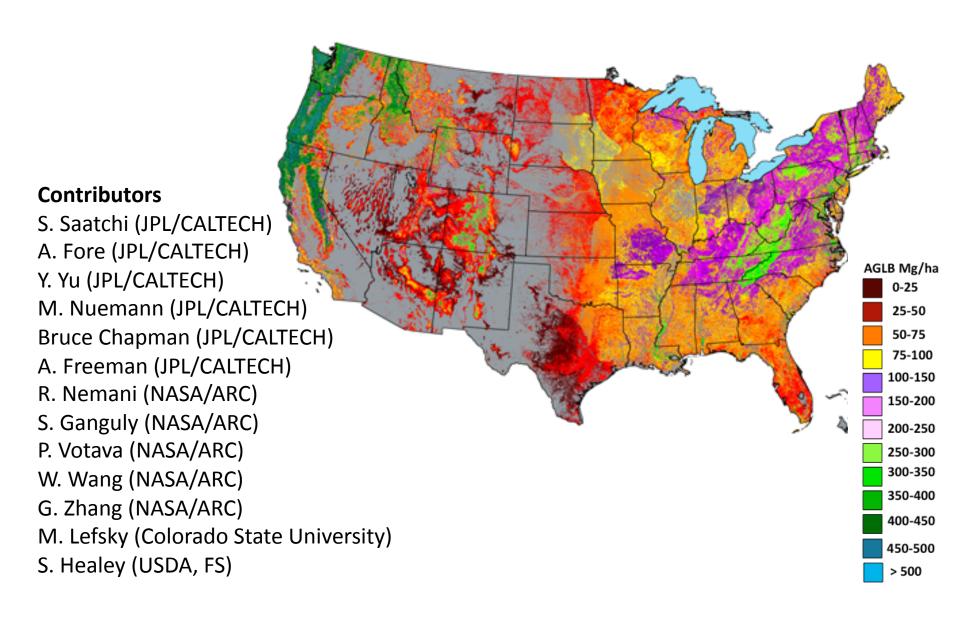
A Specially Refined and Temporally Constrained Approach to Estimate Regional and Continental Scale Vegetation Carbon Stock



CMS Team Members

NASA/JPL/CALTECH

Alexander Fore

Yifan Yu

Bruce Chapman

Maxim Neumann

Brian Hawkins

Ziad Haddad

Sassan Saatchi

NASA/ARC

Sangram Ganguly

Petr Votava

Weile Wang

Gong Zhang

Rama Nemani

NASA/GSFC

Jeff Masek

Compton Tucker

Forrest Hall

Ross Nelson

Bruce Cook

Colorado State University

Michael Lefsky

University of Maryland

Ralph Dubayah

George Hurtt

Niara Pinto

USDA Forest Service

Richard Birdsey

Sean Healey

Kristofer Johnson

Carbon Monitoring System Biomass Pilot Project

Objectives:

- ❖ Develop prototype data products of national biomass (and carbon storage/ change) that can be assessed with respect to how they meet the nation's need for monitoring (also reporting and verification) of carbon inventories.
- **❖** Demonstrate our readiness to produce a consistent global biomass/carbon stock distribution using the existing *in situ* and satellite observations to meet the monitoring (MRV) requirements.

Outline:

- ❖ National Data Processing Activities
- Development of Methodology
- Regional Results and Products
- Validation and Uncertainty Analysis

Terrestrial Biomass Pilot Project

Goal:

Provide geospatially explicit, consistent estimates of aboveground terrestrial vegetation biomass and carbon storage for the U.S. by combining advanced satellite products with ground observations and evaluate how well these estimates meet the nation's need for monitoring carbon storage and changes in carbon storage.

Objectives:

- ❖ Develop prototype data products of national and global biomass (and carbon storage/change) that can be assessed with respect to how they meet the nation's need for monitoring (also reporting and verification) of carbon inventories.
- ❖ Demonstrate our readiness to produce a consistent global biomass/ carbon stock distribution using the existing in situ and satellite observations to meet the monitoring (MRV) requirements.

Terrestrial Biomass Pilot Project

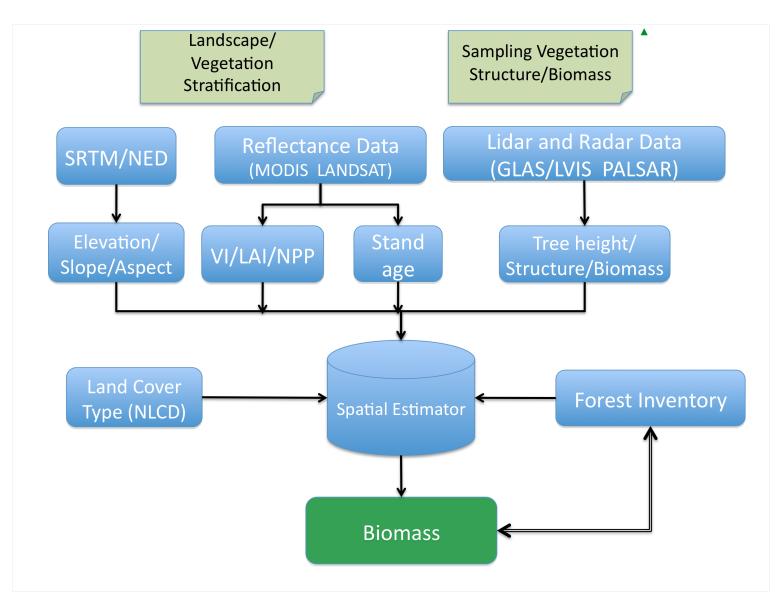
Objectives for Near-Term (first ~18 mos.):

- ***** Estimate aboveground biomass by combining data from several different satellites with ground data.
- **❖** Assess the accuracy of derived estimates by using Forest Inventory and Analysis (FIA) and other high-quality forest carbon/biomass inventory data.
- ❖ Produce a continental U.S. map of above-ground biomass, fully mapping errors and uncertainties
- ***** Evaluate the likely improvements that could be achieved using data from future missions.
- ❖ Demonstrate how well biomass can be quantified with high-quality remotely sensed data taken at fine spatial resolution for selected sites representative of U.S. forest types and conditions.
- Develop the steps for a global forest biomass product.
- → A best possible product with what we have available now . . .

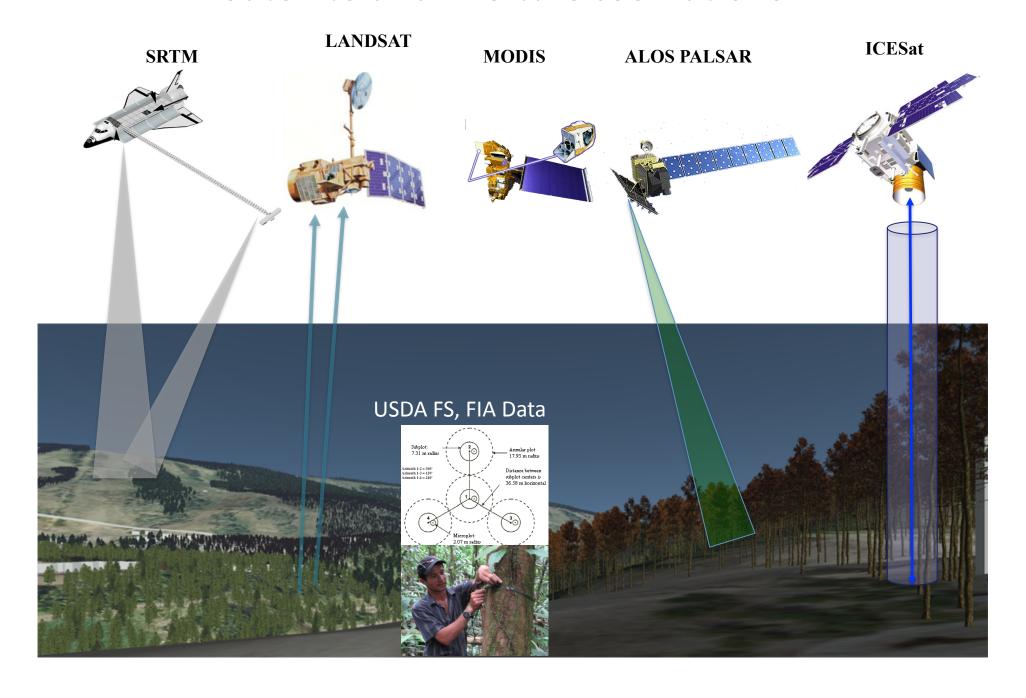
Mapping Biomass

- Forest biomass varies over the landscape as a result of several factors: Production (photosynthesis) Consumption (respiration), mortality, recruitment, harvest, and herbivory.
- Forest biomass changes as a result of factors such as: succession, silviculture, harvesting, clearing, natural disturbance (pest, fire, wind, etc.), and climate pollutants.
- Forest biomass is a useful measure to assess variations of structural and functional attributes over a wide range of environments that can be used in models.
- Environmental variables (soil, climate, and topography) do not predict forest biomass accurately.
- Systematic statistically designed sampling can provide regional and national scale carbon stock and changes, but it cannot be applied everywhere (e.g. tropics) and as frequently as needed.

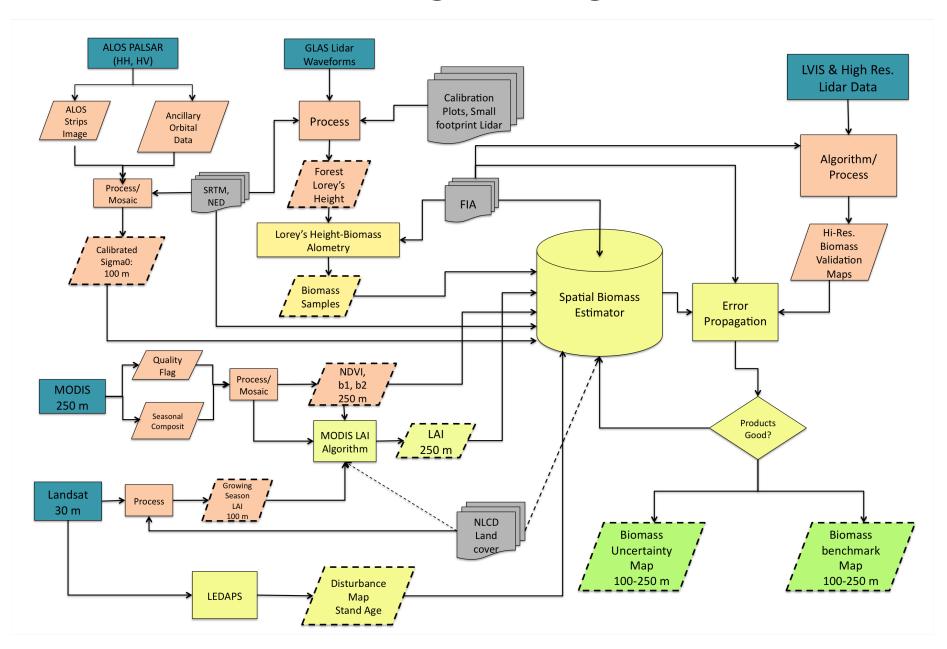
Terrestrial Biomass Pilot Project: Methodology



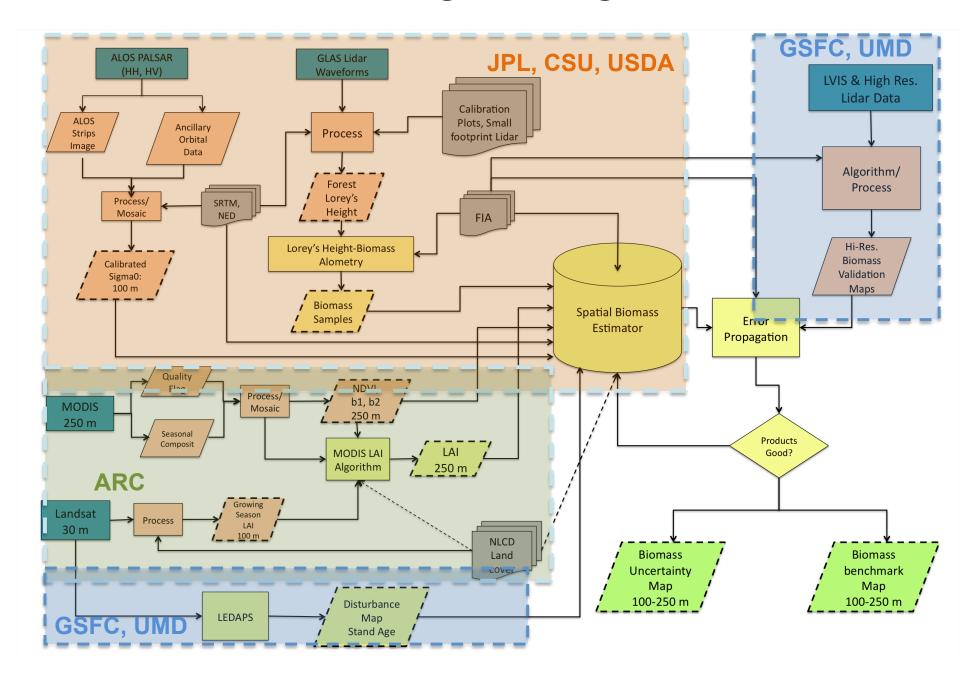
Satellite and In Situ Observations



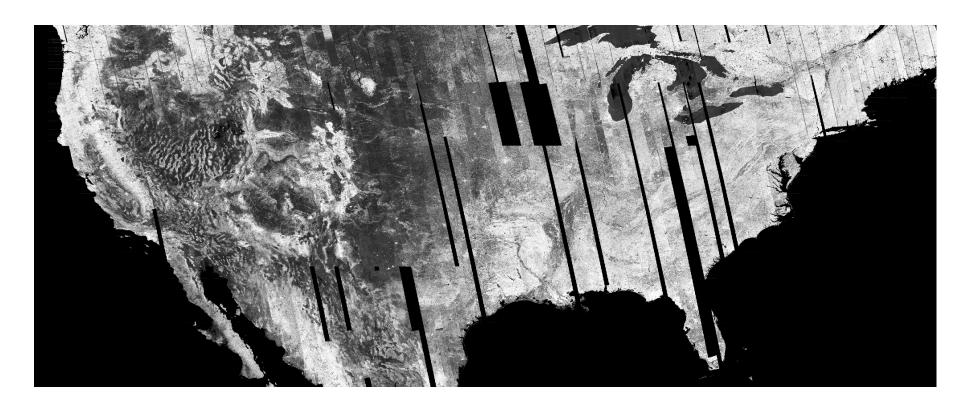
Work Plan



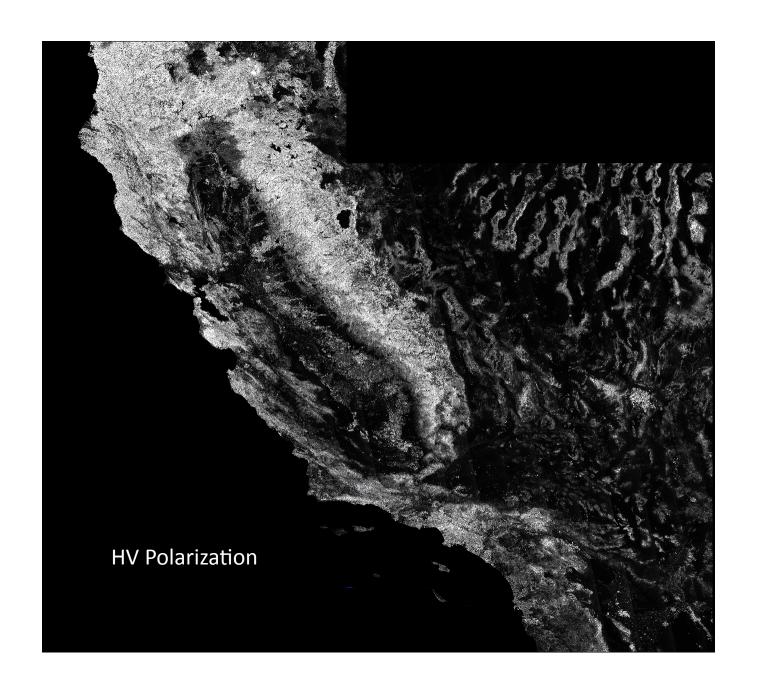
Work Plan



Continental HH US mosaic full resolution: 90 m

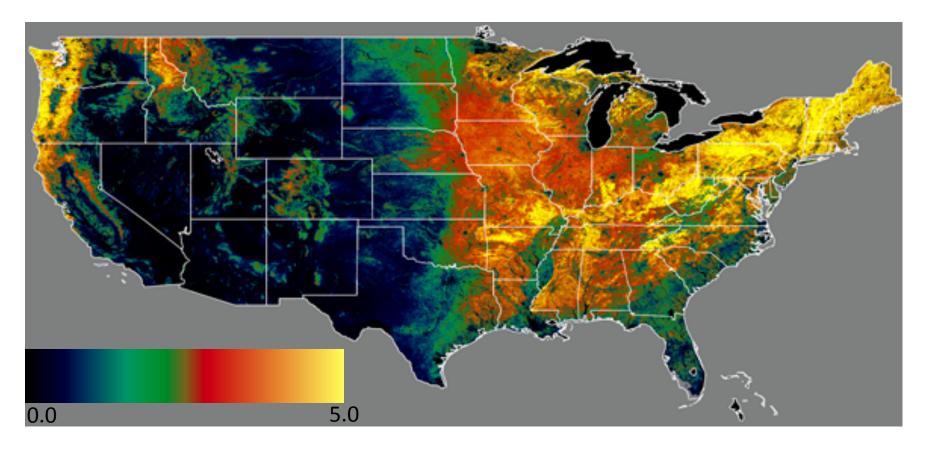


Above 40 degrees, ALOS observations switch from every orbit to every other orbit. There is less overlap between images, and some banding at edge is introduced.



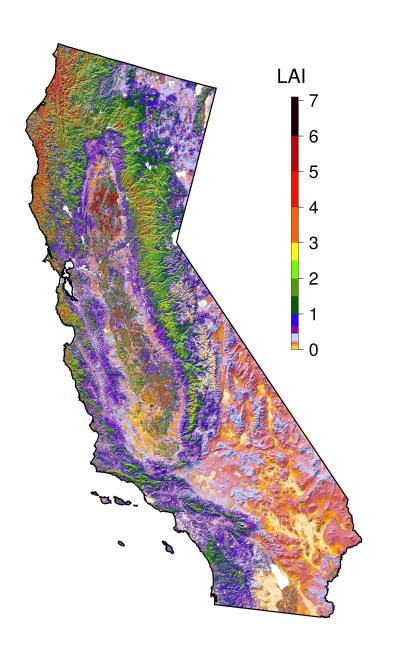
250-m LAI derived from MODIS

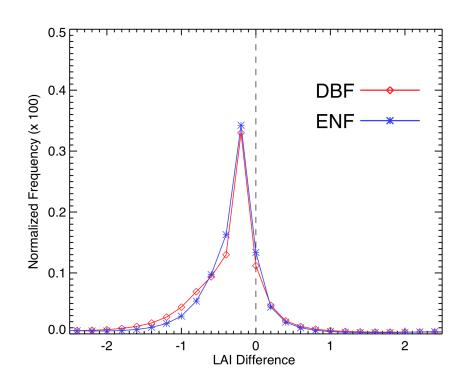
- MODIS monthly LAI Mosaic is provided at 250 m resolution
- Three years (2004-2006) of MODIS data were processed to improve image quality
- LAI estimation was implemented using the NLCD land cover map.



MODIS Summer Mean LAI (2004-2006)

30-m LAI derived from Landsat and NLCD

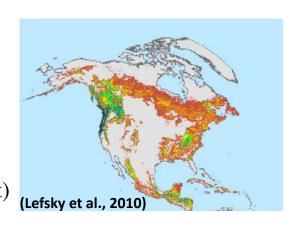


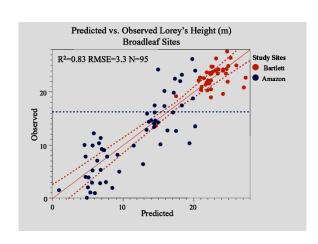


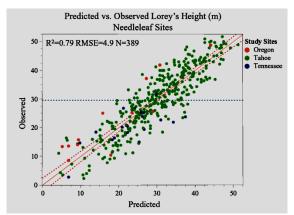
LAI difference between a 3-band inversion and 2-band inversion for pixels classified as DBF and ENF for California. The NLCD 2001 map is used to classify the forest pixels.

ICESAT GLAS Forest Height Metric

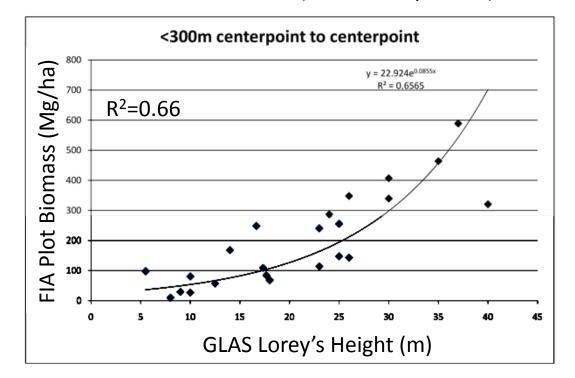
$$H_{lorey} = \frac{\sum_{i=1}^{N} BA_i h_i}{\sum_{i=1}^{N} BA_i}$$
: basal area weighted height (crown weighted height)







GLAS Validation (Sean Healey, USDA)

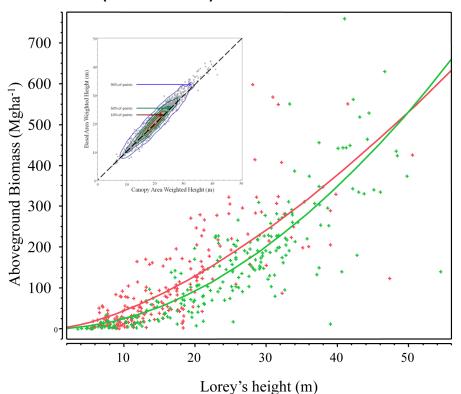


Lorey's Height Biomass Allometry

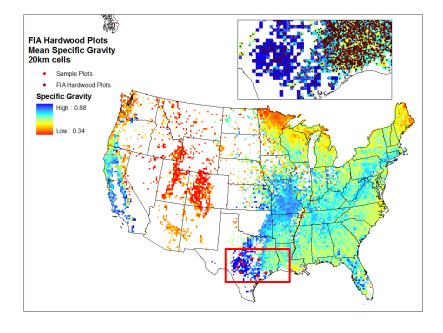
At this time, we are estimating aboveground biomass stratified by softwood and hardwood composition (for dominant individuals)

Lefsky et al. Unpublished

AGB (Softwood)=0.3177*H^{1.898} AGB (Hardwood)=1.179*H^{1.539}



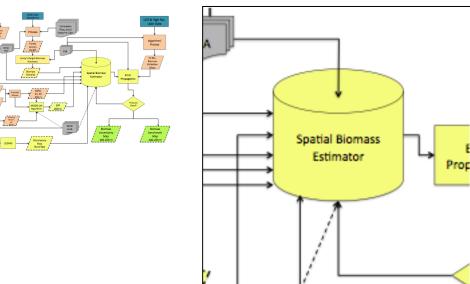
Wood Density Correction of Allometry



Spatial Biomass Estimator

Parametric Models:

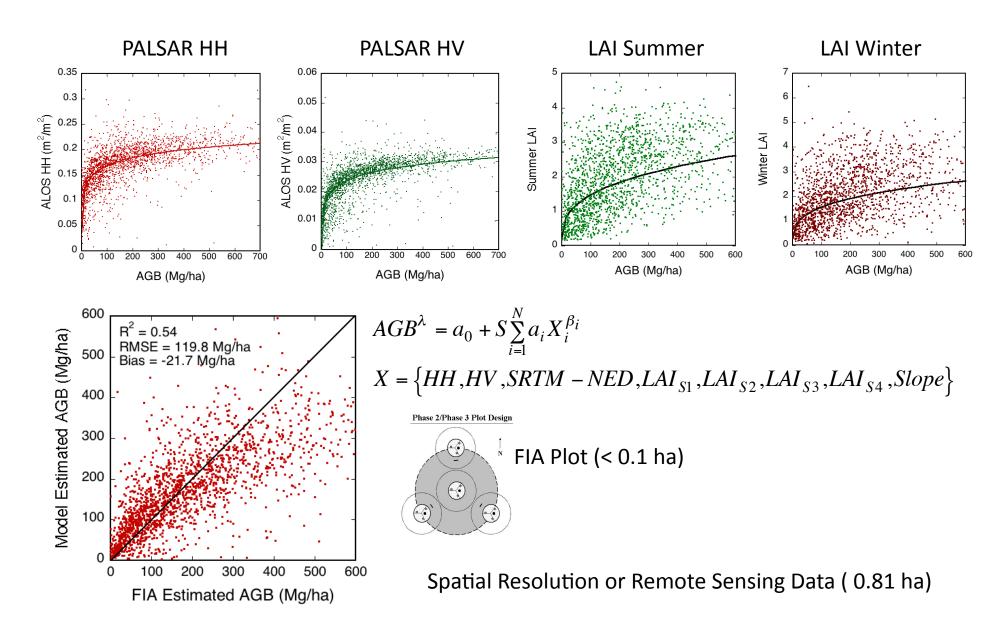
- Multivariate Regressions AGB = f(VI, SAR, SRTM)



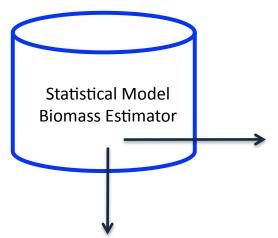
Non Parametric Models:

- Coloring by numbers (use of land cover maps)
- Image Segmentation Approach (Lefsky et al., 2010;
 Mitchard et al., 2011)
- Decision Rule, Random Forest (Saatchi et al., 2007;
 Kellndorfer et al., 2010)
- Maximum Entropy Approach (Saatchi et al., PNAS 2011)

Parametric Model



Maximum Entropy Model



- 1. A probabilistic framework
- 2. Develop incomplete empirical probability distribution based on the occurrences
- 3. Approximate with a probability distribution of maximum entropy
- 4. Use environmental variables as constraints
- 5. A rule classifier to produce forest biomass map

$$H(\overset{\wedge}{\pi}) = \sum_{x \in X} \overset{\wedge}{\pi}(x) \ln \overset{\wedge}{\pi}(x)$$

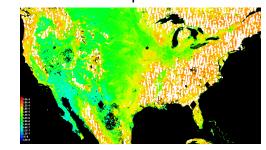
 $\pi(x)$: emperical distribution at points x (plot location)

H is maximized over feature space defined by f(x)

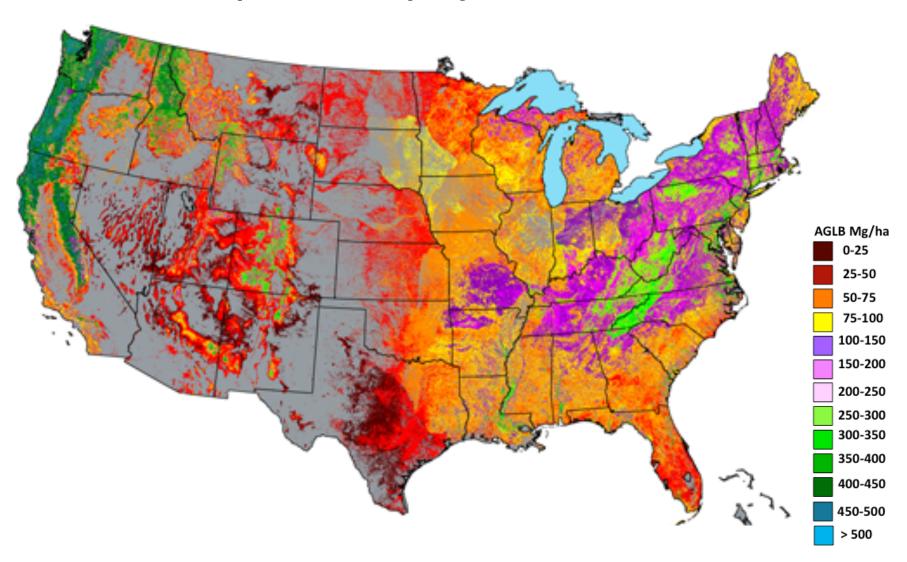
f : satellite image or environmental variable

$$\widehat{B} = \frac{\sum_{i=1}^{N} B_{i} P_{i}^{n}}{\sum_{i=1}^{N} P_{i}^{n}}, \quad \text{for } n = 1, 2, 3, \dots \qquad \sigma = \sqrt{\frac{\sum_{i=1}^{N} (B_{i} - \widehat{B})^{2} P_{i}}{\sum_{i=1}^{N} P_{i}}}$$

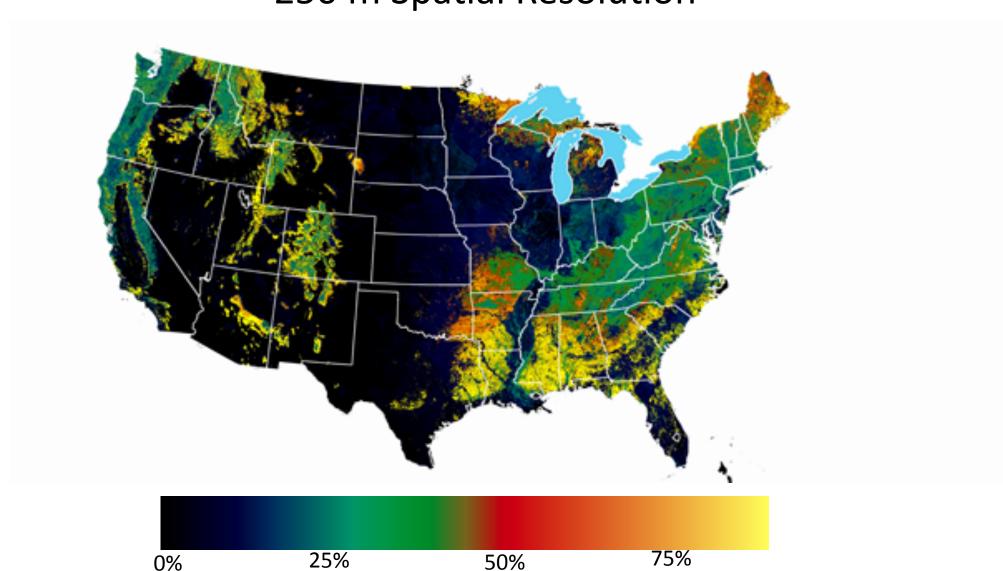
Sample Probability Space



National Biomass Estimation 250 m (6.25 ha) Spatial Resolution



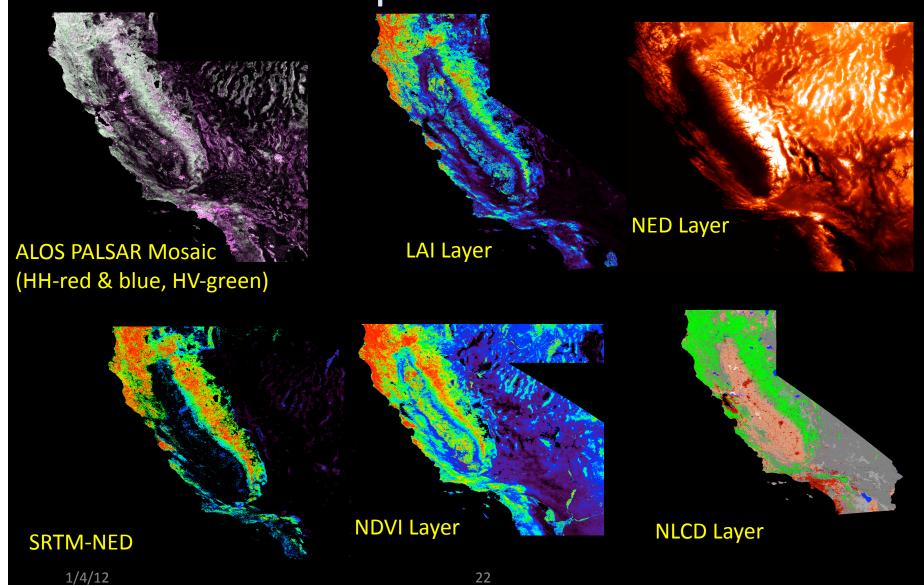
National Biomass Estimation Uncertainty 250 m Spatial Resolution



50%

0%

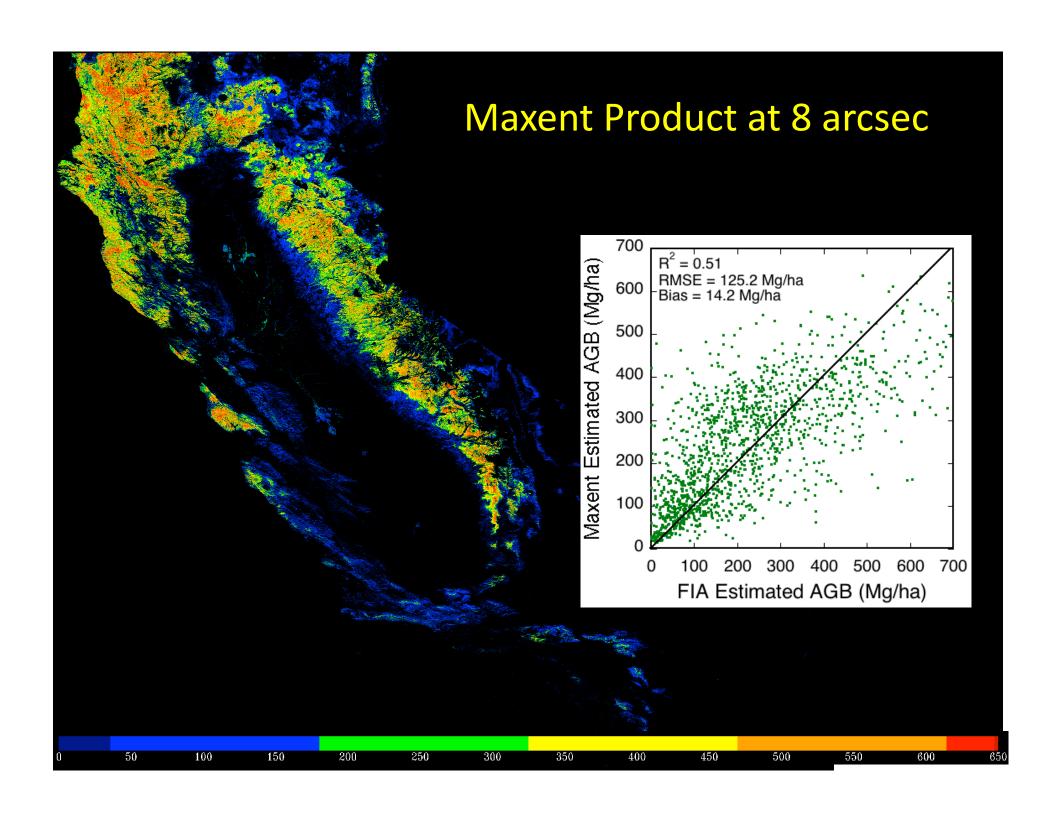
Non-parametric Model Implementation

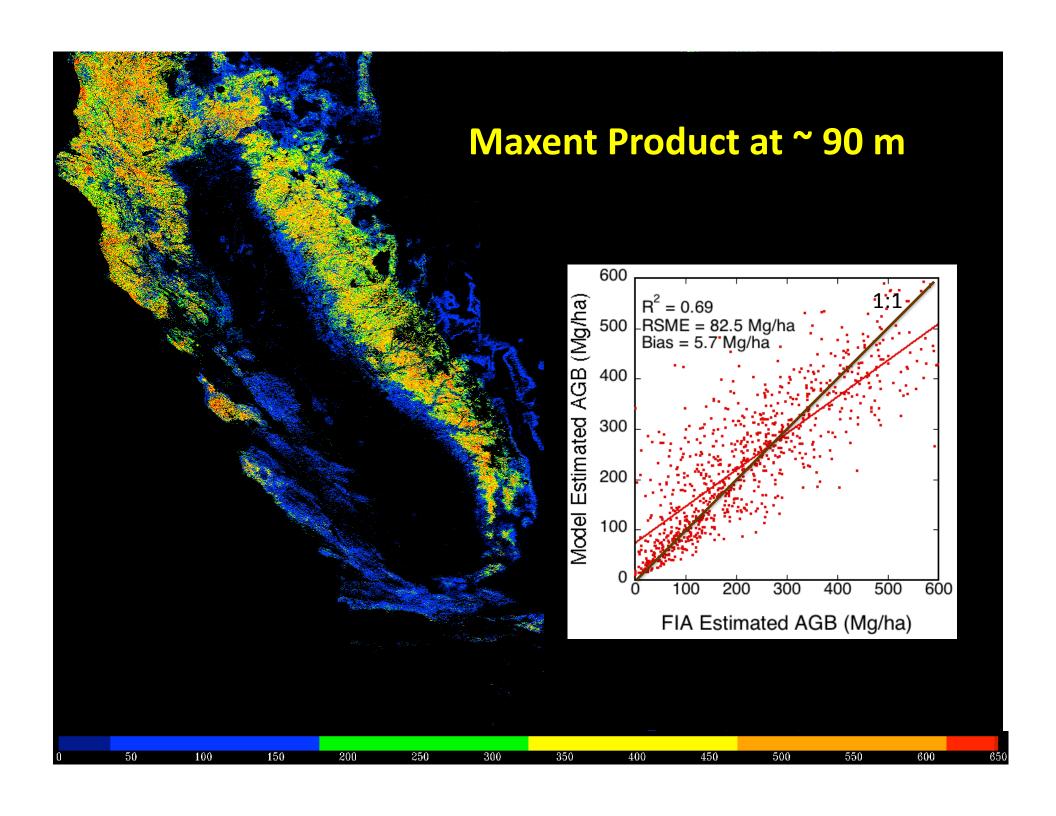


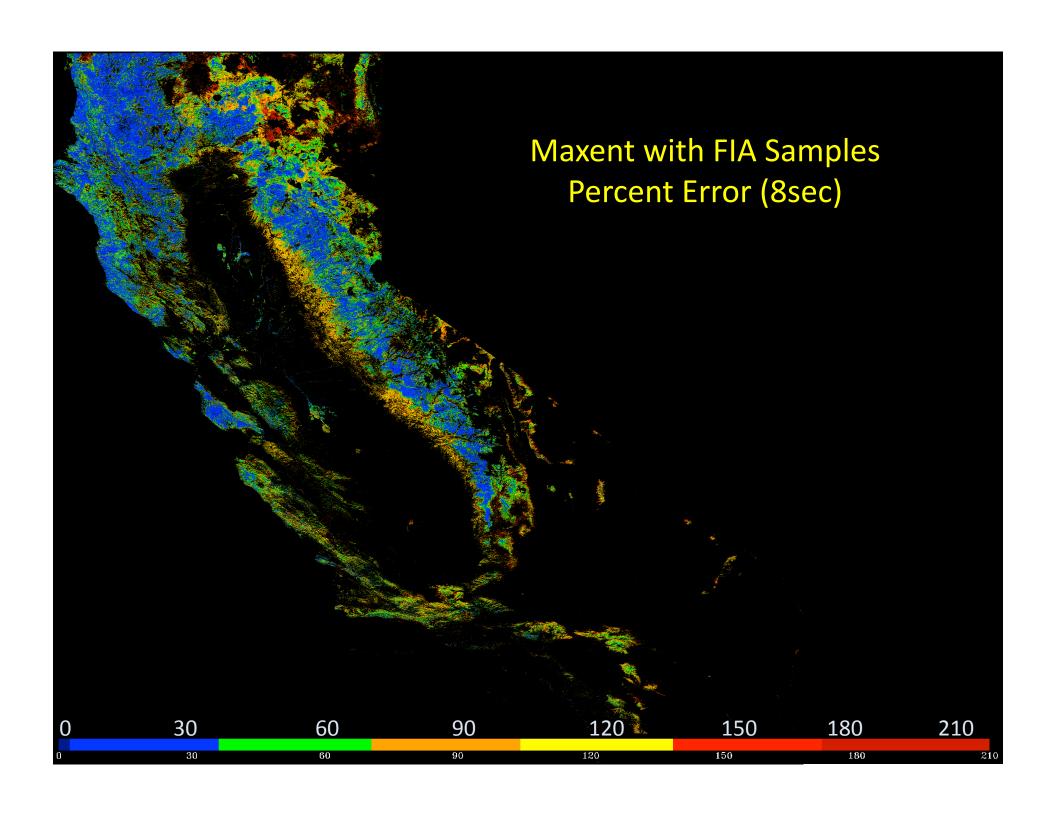
NLCD Homogeneity Index

- Resample NLCD 2006 to 3 and 8 arcsecond pixel size
 - Use majority rule to determine class of aggregate pixel
 - Create a layer which has the number of unique NLCD classes found within this pixel
- Create a new samples spreadsheet containing only FIA samples where there was one unique class in the pixel.
 - Significant reduction in the data
 - Should we train with this data, or only validate with this data?

Class agb	# Fia Plots in class	Unique nlcd In 3 sec pixel	Unique nlcd In 8sec pixel
0	62	29	10
12.5	307	142	54
37.5	236	117	49
62.5	219	114	40
87.5	183	88	35
125	288	150	77
175	238	128	66
225	206	130	70
275	157	108	62
325	109	74	47
375	84	56	35
425	70	53	37
475	55	45	32
500+	120	94	65



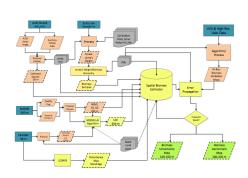


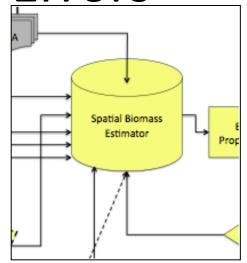


Sensitivity of Estimator to Errors

- Added random noise to:
 - ALOS HH, HV
 - LAI (spring, summer, fall, winter)
- Used a KP-style noise model:
 - X* is the noisy version of X.
 - n(0,1) is a sample from a Gaussian
 distribution with unit variance and zero mean.
 - I tried α = 0.2 and 0.3

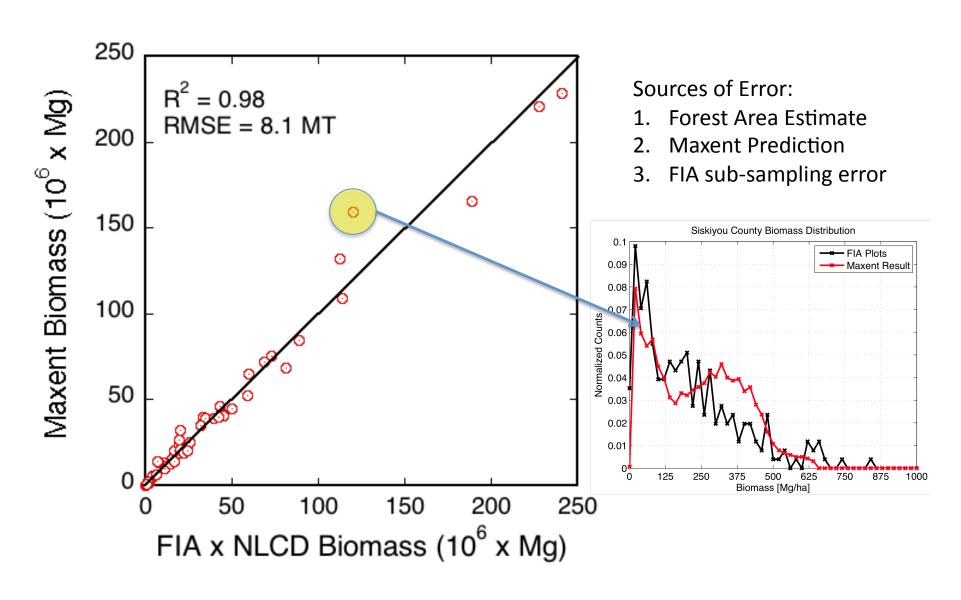
$$X^* = X[1 + \alpha * n(0,1)]$$



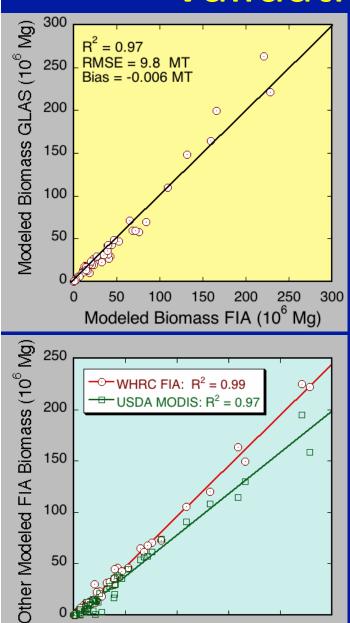


	r2	bias	rms
no noise	0.46	8.50	135.60
alos hh; 0.2	0.47	9.70	134.80
alos hh; 0.3	0.47	8.40	133.90
alos hv; 0.2	0.46	9.20	135.20
alos hv; 0.3	0.47	8.50	134.40
lai fall; 0.2	0.46	8.80	135.30
lai fall; 0.3	0.48	9.50	133.30
lai spring; 0.2	0.48	8.30	133.10
lai spring; 0.3	0.46	7.20	135.30
ai summer; 0.2	0.46	8.00	135.60
ai summer; 0.3	0.48	7.90	133.10
lai winter; 0.2	0.47	7.10	134.60
lai winter; 0.3	0.45	8.40	136.20

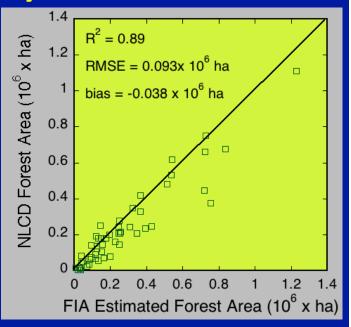
Validation at the County Scale

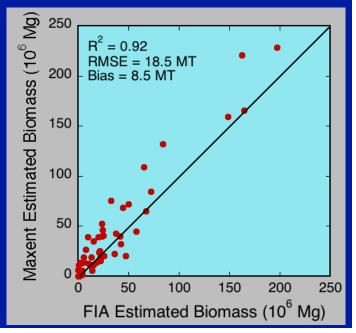


Validation at County Level



Modeled Biomass FIA (10⁶ Mg)





Summary

- 1. Combination of Lidar and satellite imagery can be used to model biomass distribution
- 2. Higher spatial resolution of 1-ha is the best to reduce errors associated with surface heterogeneity and smaller plot size
- 5. Large errors and small bias exists at pixel scale biomass estimation
- 6. Aggregated results on the US County scale agrees with the FIA data.
- 7. Uncertainty in biomass estimation is a function of methodology, location of plot data, allometry, forest area
- 8. The accuracy at county scale appears to be enough to estimate biomass changes at the annual scale, but needs to be verified.

1/4/12 30