A single photon lidar system for vegetation analysis

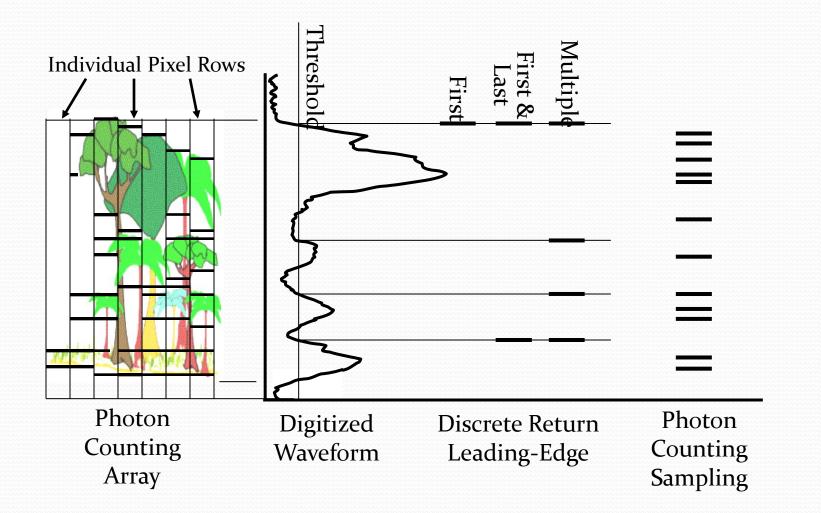
Jacqueline Rosette^{1,3}, Christopher Field², Ross Nelson¹, Bruce Cook¹, Phil DeCola², John Degnan²

> With thanks to John Armston⁴ & Weyerhaeuser Company

¹NASA Goddard Space Flight Center, USA ²Sigma Space Corporation, USA ³University of Maryland, USA ⁴University of Queensland, Australia

Carbon Monitoring System

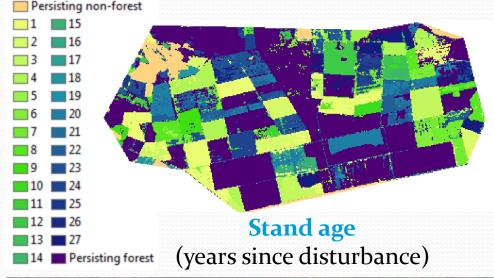
- Biomass assessment and change
- Ecologically meaningful scales
- Relevant for forest management
- Method developed for local sites
 - Transferability to larger areas
- Partners including:
 - NASA Goddard Space Flight Center
 - University of Maryland
 - Sigma Space Corporation
 - US Forestry Service


Context

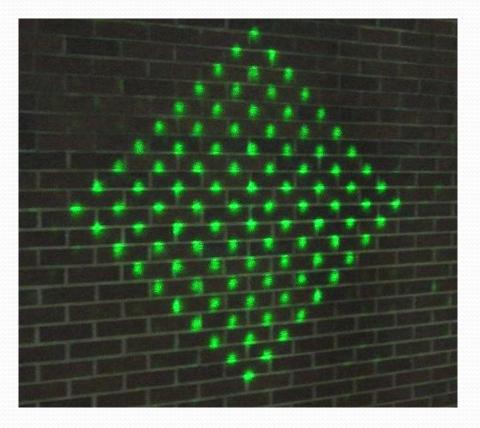
- Emerging technology
 - Photon-counting/ single photon lidar
- Lower laser output energy
 - Extended laser lifetime
- Higher altitudes
 - Regional/national scale mapping
 - Reduced cost/ increased frequency
- Green wavelength
 - Technical readiness for space
 - Background solar noise (daytime conditions)
 - Varies with surface reflectivity

- Improve understanding of interactions of single photon lidar at a green wavelength with vegetation canopy
- Comparability with more conventional airborne lidar systems
- Sensitivity to vegetation biophysical parameters

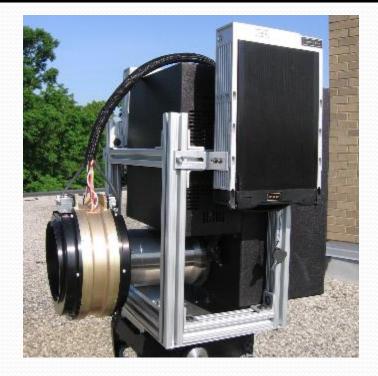
Lidar sensor characteristics


Parker Track, North Carolina, USA

- Commercially-managed
- Loblolly Pine
- Mixed broadleaf stands
- Field campaign
 - Weyerhaeuser Company
 - 7m radius plots
 - Species, DBH > 2.54cm
- Biomass calculations
 - Jenkins (2003, 2004)

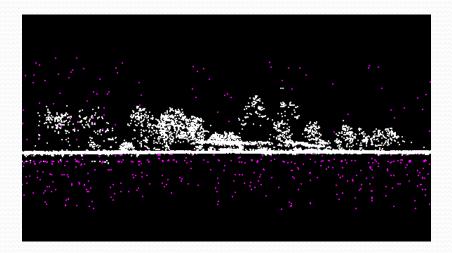

Parker Track, North Carolina, USA

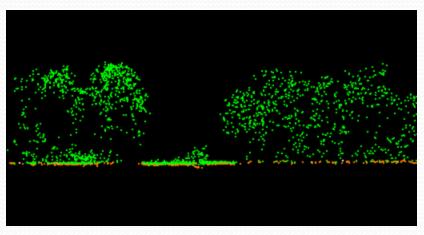
- Commercially-managed
- Loblolly Pine
- Mixed broadleaf stands
- Field campaign
 - Weyerhaeuser Company
 - 7m radius plots
 - Species, DBH > 2.54cm
- Biomass calculations
 - Jenkins (2003, 2004)


Sigma Space 3D Mapper

- 532 nm pulse
- 710 picosecond pulse width
- High repetition rate
 - 20 kHz
- Split into 100 beamlets
 - 10 x 10 diamond array
 - 50 nJ energy
- System dead time
 - 1.6 ns (22.5 cm)

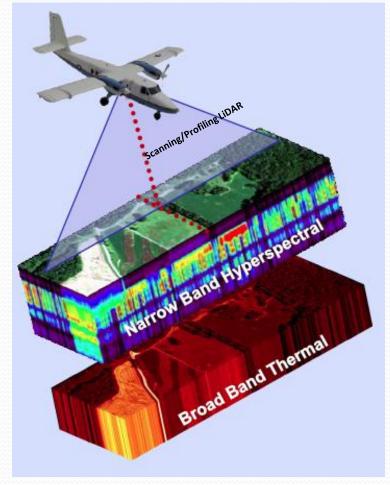
Sigma Space 3D Mapper

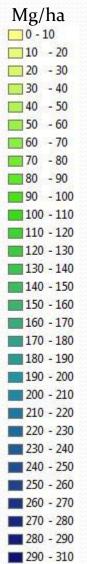




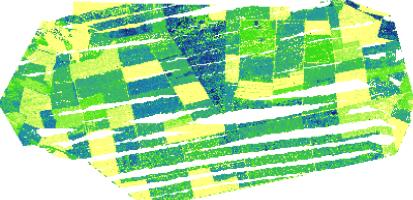
Parker Track flight campaign

- October 2010
- Daylight conditions
- Conical scanning motion
 - Forward and aft looks two chances to penetrate canopy
 - Constant viewing half angle 9°
 - Correct for pitch & yaw
- Swath width ~230m
- Altitude
 - 610 m
 - Data gaps
- Beamlet footprint diameter
 - 15cm


Data processing


- Filter noise photons
 - Identify clustering
 - Isolated points/ below surface
- Treat as conventional lidar
 - Random noise distribution
 - Column of data
- Point classification
- Height percentiles above ground

Goddard Lidar Hyperspectral and Thermal instrument (GLiHT)

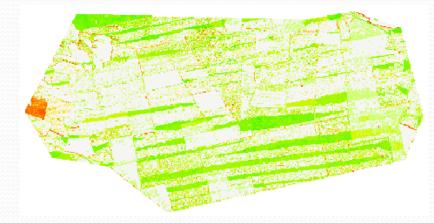


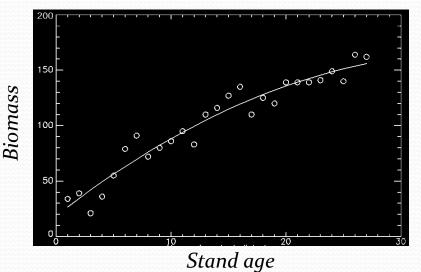
- Parker Track campaign
 - August 2011
- NIR 1550 nm
- Saw-tooth scanning pattern
- Altitude 335m
- Swath width ~ 200m
- Scan angle ± 30°
- Footprint diameter 10cm
- Multiple discrete returns

Biomass estimation

Sigma Space PC LiDAR (Autumn 2010)

- Regression relationship
 - Assume single class
 - Field plot biomass
 - 95th percentile


G-LiHT discrete return LiDAR (Summer 2011) • 3D Mapper :


- $R^2 = 0.72$
- SE = 53 Mg/ha

• GLiHT:

- $R^2 = 0.78$
- SE = 47 Mg/ha

Data comparison

- 1 year time difference
- Harvested stand

- Relationships between biomass and stand age
 - Site productivity

Single photon lidar prospects

Opportunities

- Higher altitude
- Laser longevity
- Detector efficiency
- Comparable results
- Technical readiness for space

Challenges

- Ambient noise
 - Classification
 - Rough surface boundaries
 - Performance from space
- Horizontal noise variability
 - Data column
 - Aggregating along-track

Thank you for your attention

Acknowledgements: Christopher Field, Ross Nelson, Bruce Cook, Phil DeCola, John Degnan

John Armston – software for lidar processing and analysis Weyerhauser Company – Collection of field data

> NASA Carbon Monitoring System: http://carbon.nasa.gov

Email: jacqueline.rosette@nasa.gov