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Abstract

Background: The voluntary carbon market is a new and growing market that is increasingly important to consider
in managing forestland. Monitoring, reporting, and verifying carbon stocks and fluxes at a project level is the single
largest direct cost of a forest carbon offset project. There are now many methods for estimating forest stocks with
high accuracy that use both Airborne Laser Scanning (ALS) and high-resolution optical remote sensing data.
However, many of these methods are not appropriate for use under existing carbon offset standards and most
have not been field tested.

Results: This paper presents a pixel-based forest stratification method that uses both ALS and optical remote
sensing data to optimally partition the variability across an ~10,000 ha forest ownership in Mendocino County, CA,
USA. This new stratification approach improved the accuracy of the forest inventory, reduced the cost of field-
based inventory, and provides a powerful tool for future management planning. This approach also details a
method of determining the optimum pixel size to best partition a forest.

Conclusions: The use of ALS and optical remote sensing data can help reduce the cost of field inventory and can
help to locate areas that need the most intensive inventory effort. This pixel-based stratification method may
provide a cost-effective approach to reducing inventory costs over larger areas when the remote sensing data
acquisition costs can be kept low on a per acre basis.

Keywords: Forest carbon offsets, MRV, LiDAR, Airborne Laser Scanning, stratification, post-stratification, carbon pro-
ject, carbon stock estimation

Background
The world’s forests are a critical sink of carbon dioxide
[1]. It is estimated that forest degradation or destruction
results in 6 to 17% of total anthropogenic CO2 emis-
sions annually [2]. Because of the importance of forest
ecosystems in adapting to and mitigating climate
change, there are now many policy initiatives to preserve
and restore forest ecosystems for a climate benefit [3,4].
Despite years of discussion however, policies to reduce
emissions from terrestrial ecosystems have generally not
been adopted. An exception to this is California’s cap

and trade system that will incorporate carbon offsets
starting in 2012 (barring a legal challenge) - see [5].
In part due to the dearth of climate change policies, a

vibrant voluntary carbon offset market has sprung up
centered around a suite of different carbon project stan-
dards [6-9], and managing forests for carbon offsets can
provide an important income stream for landowners
willing to undertake the costs and requirements of these
standards. These standards all have slightly different
requirements regarding how to quantify the amount of
carbon offsets generated, but generally all require peri-
odic ground-based installation and measurement of
plots to monitor project level carbon storage. This paper
will focus on the requirements of the Climate Action
Reserve Forest Project Protocol as this protocol is sub-
stantially similar to what will likely be adopted by the
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state of California for their compliance carbon market
system. The ground based inventory described here, like
most traditional forest monitoring, relies on tree mea-
surement and conversion to volume, biomass, and car-
bon equivalents using established species-specific
regressions developed through destructive sampling of
trees [10-13]. These sample-based estimates of forest
carbon storage are then extrapolated across the full pro-
ject, often through a stratification approach, whereby
unsampled areas receive estimates from areas with simi-
lar characteristics based on their remotely sensed attri-
butes [14].
This traditional approach to estimating forest para-

meters has recently been supplemented and improved
upon with the use of remote sensing technologies like
Light Detection and Ranging data (LiDAR) paired with
high resolution multi-spectral imagery. While these new
technologies can accurately estimate forest carbon
stocks and fluxes, some of the methods are not easily
applicable to forest carbon offset projects because of
their complexity and expense. There is a need to apply
these new remote sensing products in the context of the
voluntary carbon market to show their usefulness at a
project level in conformance with typical forest carbon
project standards.

ALS and Optical Remote Sensing
Optical remote sensing products derived from airborne
and satellite-borne sensors - Landsat Thematic Mapping
Imagery [15,16], IKONOS imagery [17], Quickbird ima-
gery [17-20], SPOT HRG imagery [21], Moderate Reso-
lution Imaging Spectroradiometer (MODIS) [22-28], and
others [29,30]- have all been used to classify forest land-
scapes and in some cases to estimate standing carbon
stocks. However, estimates of carbon stocks and classifi-
cations created using optical sensors alone usually have
trouble differentiating areas with high carbon stocks
[31,32]. Synthetic Aperture Radar (SAR) sensors can
help improve estimates of biomass but these sensors
also saturate in high biomass systems [33]. Because of
these limitations, the estimation of forest carbon stocks
is often greatly improved with data about forest struc-
ture and specifically forest height. Airborne Laser Scan-
ning (ALS), provides a richer summary of forest
conditions and more accurate estimates of volume and
biomass due to its ability to accurately capture forest
heights (LiDAR intensity values can also be used to
improve estimates).
ALS paired with other optical remote sensing data is a

well-established approach to spatially estimating forest
attributes [34-40]. The use of optical remote sensing
data in conjunction with LiDAR data is helpful in both
delineating crown boundaries and in differentiating
between species [32,35,37-40]. The ability to make

species level distinctions is especially important when
estimating merchantable timber volumes and biomass,
as these parameters differ between species in trees that
are the same size.
ALS data is collected from an instrument that is flown

over the forest on an airplane or helicopter. Laser pulses
emitted from an airborne instrument reflect off of ter-
rain and vegetation revealing both forest structure (e.g. -
height, sub-canopy elements) and a detailed digital ele-
vation model [41,42]. Individual laser returns can be dis-
crete or continuous (waveform). The spatial resolution
can vary from many returns per square meter to sparser
returns. The coverage of the ALS can range between full
coverage of a given area with no gaps to a sample of the
area based on transects below the flight lines to spot
samples within transects (i.e. GLAS) [43,44].
There are two broad categories of ALS data analysis

approaches: area based approaches (ABA)/statistical
canopy height distribution approaches, and individual
tree crown approaches (ITC). Many individual tree
approaches use the cloud of LiDAR point data and their
relationship to neighbourhood points to build individual
crown polygons and/or 3-dimensional tree profiles
[42,45,46]. These individual tree records can then be
aggregated to any scale required to create stand level
estimates. These ITC approaches use both parametric
and non-parametric approaches [47].
In area based approaches, plot level data is related to

remote sensing data that has been aggregated to pixel,
plot, or polygon (e.g. stand) units to estimate volume,
biomass, or other area based metrics. Area based
approaches fall broadly into two main categories:
1) The first category relates grid-cell or stand level

remote sensing data to measured plot characteristics to
build parametric models to represent forest data. These
models have been shown to explain the vast majority of
the variation in tree height, diameter at breast height,
volume, biomass, basal area, and a suite of other para-
meters [36-38,41,48-51]
2) The second broad category uses non-parametric clas-

sification or nearest neighbour methods to stratify the for-
est into similar groups [52-58]. Non-parametric
approaches include k-nearest neighbour techniques [59]
and classification algorithms such as Random Forests [53].
Area-based approaches and individual tree approaches

to estimating forest parameters are not mutually exclu-
sive however, and several authors have shown how area
based systems can be combined with individual tree
methods [40,60]

ALS and Optical Remote Sensing for a Forest Carbon
Offset Project
The methods outlined above all provide different
approaches to using ALS data and other data sources to
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estimate forest parameters. There are two main hurdles
in using these methods for forest carbon offset projects.
First, the method must be cost-effective and must also
fit within the existing management framework of the
project. Second, the estimation method must meet the
monitoring and verification requirements of the carbon
offset protocol. These protocols require periodic inven-
tory of the forest and the application of species-level
biomass and carbon conversion equations to all inven-
tory estimates [7,8,61]. For example, the Climate Action
Reserve Forest Project Protocol v3.2 requires that the
United States Forest Service biomass conversions are
used for all trees in the project area. Using a stratified
inventory approach provides an easily understandable
way to generate strata-level tree lists simply from plot
data and because of this is more easily verified [8].
Although it may be possible to use some of the existing
approaches within a forest carbon project framework,
their complexity makes them difficult to understand and
potentially challenging to verify. Some approaches do
not generate species specific estimates of tree size that
can then be used to expand to volume and/or biomass
using approved biomass regressions (e.g. - [36]). The
primary objective of this paper will be to describe
how the ALS and optical remote sensing stratifica-
tion system adequately meets the requirements of
forest carbon protocols while improving the accuracy
of forest inventory estimates.
In addition to describing a method for ALS and opti-

cal remote sensing data to stratify a forest ownership to
meet the requirements of a carbon project protocol, this
paper will also detail how and where sampling should
occur. ALS and optical remote sensing data provide a
wealth of information that can be used to increase the
efficiency of sampling a forest. A secondary objective
of this paper then, is to provide a method to choose
the optimal size for the units of analysis (grid-cell
size) and to locate plots across the project once the
grid is established. Past research has used LiDAR data
to stratify an area and locate field plots but these studies
have not combined both LiDAR and optical data in the
stratification and plot location. These studies have
shown that using LiDAR data to first stratify an area
and then to locate field plots based on initial strata
reduced the root mean squared error (RMSE) of pre-
dicted volume [44,62].
The question of the optimal grid-cell size has been

addressed from the opposite direction by Gobakken and
Næsset [63]. They examined the optimum plot size to
use to best correlate the remote sensing data with the
inventory data; however their analysis only used fixed
area plot designs and did not examine what scale to
aggregate the remote sensing data (i.e. - how big should
the grid cells be?). Van Aardt et al. [64] examined

various sizes of stands using variable radius plots but
their analysis involved the best fit when a stand could
contain multiple plots and did not use a regular grid
system. Therefore, this new approach will show how to
find the most appropriate grid cell size that relates vari-
able radius prism plots to remotely sensed data where
each grid cell receives no more than one plot.
Although there has been ample discussion of the tech-

nical nature of ALS-assisted forest estimation, few stu-
dies move beyond the initial analysis and results with an
eye to future management and monitoring. The third
and final objective of this study is to examine how to
best leverage data generated by this stratification
and modelling exercise for typical management pur-
poses and how to perform inventory updates assum-
ing regular remote sensing data acquisition is not
feasible (given cost constraints).
Using an ALS and optical remote sensing stratification

system, a verified and registered carbon project in Men-
docino County, California, the Garcia River Forest
(GRF), was inventoried in 2010 to meet the require-
ments of the California Climate Action Reserve (CAR)
Forest Project Protocol. Three remotely sensed image
datasets - color infrared data (CIR), Red, Green, and
Blue true colour imagery (RGB), and LiDAR data - were
used to create a canopy segment layer, a canopy height
model, and a digital elevation model. These data were
summarized to 20 m (1/10 acre) grid cells over the
property. An initial systematic random sample was then
installed over the full property. The remotely sensed
variables were collapsed using a principal components
analysis, and combined with the canopy segment sum-
mary variables and topographic descriptors, and field
survey data to explain the variation in the initial sample
of basal area (BA) using a regression model (models to
predict trees per hectare (TPH) and percent conifer BA
were also developed). The BA model was then used to
estimate the basal area for each grid-cell on the prop-
erty. The BA modelled estimates were then combined
with average canopy height derived from the LiDAR
canopy height model and the product of basal area and
canopy height was calculated as a proxy of volume.
This proxy was then divided into classes using an opti-
mal binning heuristic, to define the strata. After this
final stratification was completed, a second set of plots
were installed to fully inventory each strata, with the
number of plots based on the variability of each strata
(see Figure 1).

Results
Traditional Stratification and Inventory and Approaches
Traditional forest stand delineation and stratification
(typing) are done by examining aerial photos of a forest
and manually drawing boundaries around similar forest
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areas. This approach requires a forester to then place
each stand into a stratum, based on their familiarity
with actual forest conditions. This stratification may
also use a visual check of ground data and may incorpo-
rate some plot data to inform how stands are assigned
to strata [65-68].
This approach to stand-delineation and stratification is

preferred to unstratified sampling designs, both because
of its simplicity and its accuracy in estimating forest
parameters. This approach is also preferred because
knowing stand boundaries is useful for management
purposes and harvest planning. The use of forest strata
and stand delineation is ideal in forests with well-docu-
mented management histories and/or areas where even-
age management was used in the past. Stand boundaries
are easily seen and delineated when they correspond to
past management and management history can inform
the typing of stands. However, in forests managed with
uneven-aged silvicultural systems or without a well
maintained history of past management, it can be diffi-
cult to create a stand map that accurately partitions the
variability of a forest due to the relative homogeneity of
the forest when observed from aerial photos. In this
study, the field site fits within one of these categories:
the past management was well-documented but the
uneven-aged harvests have left a forest that does not
have many clear stand boundaries (see Figure 2), thus
rendering the traditional stratification approach less
accurate.

Using an ALS and optical remote sensing stratification
system, the 9,623 ha (23,780 acre) GRF property was
divided into 36 strata (35 forested and 1 non-forested)
across the property. Each strata is at least 4.05 ha (10
acres) in size. Strata with higher numbers generally
represent better stocked forest areas that have larger
trees with more volume and carbon. This approach to
forest stratification produces inventory estimates with
more statistical confidence relative to the traditionally
stand-based inventory approach using about half as
many plots (see Table 1 and Table 2). Figure 2 shows a
map of the strata generated by this new approach with
the old stand boundaries shown in black. Except for the
green areas that correspond with grassland, brush-fields,
true oak woodlands, or stands treated to reduce tanoak
competition most of the property has unclear stand
boundaries in a traditional sense, with a high degree of
variability within stands.

Regression Model Results from the Initial 199 Plots
The model form used to explain the correlation in BA is
shown below. Both the response and predictor variables
have been transformed using a natural logarithm trans-
formation.

Y = Xβ + ε

where Y is the transformed response, X is a matrix of
transformed predictors identified by the Lasso method
and b is the vector of least squares coefficients. The
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Figure 1 Outline of ALS and optical remote sensing data stratification method.
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predictor variables used in these regressions are several
topographic and LiDAR tree crown variables and the
principle components of the color-infrared (CIR) and
RGB imagery data sets as well as the PCA rotations for
a suite of variables derived from the LiDAR data (the
PCA rotations were used to reduce the number of para-
meters to analyze when building these regressions - see
the Appendix for a full list of the predictor variables
considered). The components of the b vector and the
predictor variables (X) for the BA model are listed in

Table 3. The variables are arranged such that those
explaining most of the variation are listed first and
those explaining the least are last. Regression relation-
ships for trees per hectare and percent conifer BA are
also shown below. These relationships were used when
lumping strata with less than 10 acres into other larger
strata in the last step of the stratification process. A
logistic model form was used for % Conifer BA.
As has been found in previous crown-based inventory

projects, the LiDAR and CIR based variables predict the
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37
39
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41
42
43

¯

0 5 102.5 Kilometers

Figure 2 Overlay of 2009 Stand Layer with final stratification of the Garcia River Forest.

Table 1 Inventory Accuracy Statistics

Sample Type Original Forest Inventory: (Multi-Stage Probability Proportional To Size Stand
Based Stratification)

ALS and ORS Grid-Based Inventory: (post-
stratification)

C 90%
Accuracy

3.72% 3.42%

BA 90%
Accuracy

5.4% 3.60%

BF 90%
Accuracy

7.56% 5.30%

The original forest accuracy estimates are based on all plots grown forward to 2009 using the Forest Projection and Planning System growth and yield model
calibrated to the Northern California redwood region. The 90% accuracy percentage is the property level standard error of the mean multiplied by the 90% t-
value (1.645) divided by the mean value.
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BA and TPH components best, while LiDAR and RGB
variables are more help in predicting species composi-
tion [32,37-40]. The dominance of the color variables in
predicting species composition is likely due to the rea-
lized species composition of the property being better
represented by the image spatial domain than the image
frequency domain. The spatial domain treats the image
plane as a spatially related database and summarizes the
pixel information in context to its neighbors. The fre-
quency domain works on the Fourier transformation of
the pixel information. In this case texture, characterized
by both grain size and arrangement were more impor-
tant in discerning species composition than were the

absolute color values [69]. In other environments where
the leaf color differs more profoundly, color has been
more important than texture.
Since the coefficient of determination (R2) is the

square of the correlation (r) between the predicted and
observed values, a simple transformation of it provides a
measure of the sample efficiency (Table 4). Sample effi-
ciency is the ratio of the number of correlated plots to
uncorrelated plots required to achieve the same level of
precision [70]. For example, using values from the table
4 a sample correlated to BA only would require 40.6%
of the plots to achieve the same level of significance
compared to an uncorrelated sample. This analysis is
complicated since the goal of this project is to predict
forest structure, which is a composite of these values
(and others). The sampling efficiency therefore cannot
be directly derived from these values; they are provided
strictly as an illustration. However, if forest structure
can be reduced to a single metric and that metric
related to the remotely sensed data it is likely that the
sample reduction would be even more significant (future
efforts will likely sample based on Board Foot volume or
total volume as this is more related to forest structure).
Board Foot (BF) volume is the merchantable volume of
trees and only is calculated for merchantable trees (i.e. -
conifer species). This value is important for manage-
ment purposes as BF volume is the primary economic
value of many forests.
Figure 3 shows the modeled versus measured BA in

the original and final plots. An examination of the
model fit with the original 199 plots (blue) showed that
there weren’t any strong trends in the residuals.

Final Stratification Results
The final ALS-optical remote sensing stratification sys-
tem resulted in more accurate property level estimates
of live and dead carbon and basal area than the prior
traditional stratification system (Table 1). Accurate

Table 2 Summary and Comparison of 2009 and 2010
Stratification Systems

2009 2010

Total Plots 1579 810

Max Plots/Strata 394 40

Min Plots/Strata 4 15

Median Plots/Strata 45 22

Average Plots/Strata 75 23

Total Stands (Pixels) 278 240,410

Sampled Stands (Pixels) 170 810

Max Stand (Pixel) Area (ha) 1,023 0.04

Min Stand (Pixel) Area (ha) 0.8 0.04

Median Stand (Pixel) Area (ha) 14 0.04

Mean Stand (Pixel) Area (ha) 33 0.04

Forested Strata # 21 35

Max Strata (ha) 1,704 1,816

Min Strata (ha) 7.3 3.9

Median Strata (ha) 230 76

Average Strata (ha) 444 255

The 2010 “stands” are called stands as that is their closest analogue when
thinking about a traditional stand-based stratified forest inventory. However,
these “stands” do not correspond to management units and are therefore
better thought of as pixels.

Table 3 Final Model Forms and Coefficients

BA TPA % Conifer BA

Intercept 3.079788313 Intercept 6.19851 Intercept -0.04949619

CIR3 -0.11917071 Crown closure 0.0006754 LI1 0.161971603

Average crown segment height 0.00519755 LI6 -0.19544 RGB4 0.81924046

Crown closure 0.017182801 LI7 0.05154 LI2 0.09321113

LI7 0.07755464 LI4 0.02984 LI6 -0.19769152

CIR6 -0.11007 RGB5 -0.50907623

LI2 -0.20571 LI7 0.294606256

LI1 0.18478 RGB1 0.824221728

RGB6 -0.42129326

LI5 -0.50907623

All coefficients are significantly different from 0 at the 95% confidence level.
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stand delineation has the goal of maximizing between-
stand variance while minimizing within-stand variance.
To better understand the improvement this new
approach to stratification provides, it is compared to the
previous inventory that used a traditional stand-based
stratification.
Based on the results seen using this new stratification

approach there are several conclusions that can be
drawn. First, with half as many plots (Table 2), we have
more statistical confidence in the inventory using this
method due to the high resolution stratification derived
from the remotely sensed imagery (Table 1). Second,
this new stratification approach has shown that past
samples most likely averaged more highly stocked ripar-
ian areas with non-riparian areas and therefore showed
less volume on this property. Third, this new strata sys-
tem allows for a flexible approach that can be easily
leveraged when designing timber harvest plans or trying
to understand the habitat of a given area. For example,
accurate inventory estimates can now be made for any
polygon across the full ownership simply by aggregating
a set of grid cells.

Old Stand Level Comparison
Visually, the strata systems are much different (see Fig-
ure 2 and Figure 4), as the old stand boundaries lump
together many cells that are currently considered differ-
ent strata. This visual comparison shows that although
the old stratification and stand delineation does a rea-
sonable job of capturing some of the differences in the
stands, there are many areas where it is hard to see well
defined stand boundaries.
Another way to compare the current strata system to

the prior system is to look at some well sampled stands
in the prior inventory and compare those estimates to
the current strata-based estimates (Table 5). Quantita-
tively the differences between estimates of stand para-
meters are not statistically significant (except for BA -
this result was also found in Hudak et al. [52] and they
postulate that this bias is a result of the natural loga-
rithm transformations and back transformations). These
results therefore are an indication that the current stra-
tification system, though much different than the pre-
vious system, produces estimates of stand level
parameters that are similar to a traditional forest inven-
tory (but more accurate). The advantage is that these
estimates can now be found for any arbitrary polygon
across the forest by grouping cells of interest and gener-
ating estimates for this group [52]. This approach there-
fore presents a much more flexible set of data to gauge
forest conditions.

Discussion
Selection of Grid Size
The first step in partitioning the variability of the GRF
was to establish a grid across the whole property.
Many LiDAR driven forest inventories in past studies
have used stem-mapped plots to correlate ground data
with remote sensing data by using the actual location
of trees and their crowns to build models that relate to
the remotely sensed crown polygons and crown heights
[37]. In this application however, variable radius plots
were used to correlate the vegetation and the cell
variability recognized by the LiDAR imagery. Stem
mapping was not chosen because it would have been
prohibitively expensive due to the high number of
stems per ha and the steep terrain. However, because
variable radius plots were used it is difficult to know
the optimal size for grid-cells given that the size of the
plots is variable [65].
The exercise of choosing the size of the grid cells is

dependent on several factors. The first consideration is
the ability to accurately locate sample plots using hand-
held GPS units. The GPS units used by the inventory
cruisers have accuracies that exceed 10 m (33 feet) 95%
of the time [71]. The second factor when choosing the
grid size is finding the optimal cell size to reduce the

Table 4 Initial Model Fit Statistics

Model MSE R2 Sample efficiency = 2
(1-r)

Number of
variables

BA 0.21687 0.635 40.6% 4

TPA 1.46939 0.568 49.3% 7

%
ConBA
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Figure 3 BA Model residuals. Initial sample: blue dots, final
sample: orange x’s. The BA model residuals were not significantly
different than a normal distribution (Pearson Chi-Square Normality
Test, p-value = 0.7076)
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variability between the remote sensing data and the
measured plot data. Past studies have shown that it is
important to choose a grid size that best matches the
size of the plots installed [41,48]. van Aardt et al. [64]
also explored this question using an object based
approach (as opposed to pixels, objects are non-uniform

areas of similar characteristics) and found only a small
loss of accuracy with increasing object size. Pesonen et
al. [72] have also examined the optimal fixed area grid
cell size but for that study focused on finding the opti-
mum grid cell size when estimating coarse woody debris
as opposed to standing trees.

Table 5 Comparison of recently cruised stands using old strata system and current strata system

2009 Data (2008 Plot Data Is Grown to 2009) 2010 Data

Strata Stand Ha Year
Cruised

Plots BA
(m2/ha)

TPH (> 5
cm)

BF per
ha

C (Mg/ha - no
dead)

# of 2010
Strata

BA
(m2/ha)

TPH (> 5
cm)

BF per
ha

C (Mg/ha - no
dead)

DR1M 2 53 2009 4 47.3 739.8 35,031 174.5 26 45.7 824.8 28,938 157.6

GX2D 115 7 2009 4 25.4 339.7 6,169 123.6 16 38.2 709.6 17,104 132.8

MH2D 171 35 2008 4 32.7 1,255.6 32,564 127.8 23 44.0 822.0 24,558 150.9

DR2D 239 13 2008 4 19.0 219.0 26,084 93.7 23 42.0 695.5 28,769 145.5

DR3D 265 54 2008 4 43.2 883.1 55,819 217.8 29 44.6 737.9 32,592 154.5

CH2M 269 183 2008 20 43.1 1,404.7 35,222 156.2 30 48.5 839.4 34,417 169.5

CH2M 270 138 2008 16 47.5 1,646.9 28,088 170.3 30 48.3 842.1 34,136 168.2

CH2M 271 131 2008 16 40.0 1,745.1 22,248 140.2 29 46.7 808.5 32,671 163.1

The estimates of stand level TPH, Board Feet (BF)/ha, and Metric Tons of Carbon (MgC)/ha showed no statistically significant difference between the past stand
delineation estimate and aggregating the current stratification system to the old stand boundaries except for basal area (paired t-test p-values: BA = 0.034, TPH
= 0.23, BF/ha = 0.81, metric tons Carbon/ha = 0.7).

a) b)

Figure 4 A visual comparison of the current stratification system versus the prior system. Figure 4a shows the current strataification
system (with the old stand boundaries as well). The 0.04 ha grid cells are shaded to represent their different strata with redder cells having less
volume than green cells. Figure 4b shows the prior stand delineation for this same area with the true-color imagery of the area as the base layer
to show actual forest conditions. Note that the new strata grid-cells do correspond to the old stratification in areas where there are clear stand
boundaries but in mixed forest conditions the new system can distinguish different forest conditions that the original strata system lumped
together. This new strata system also does a much better job of mapping landings/clearings and wide road areas (most of the red and orange
cells).
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Approaching the question of the optimum size to best
relate plot data to remote sensing data, Gobokken and
Næsset[63] used a Monte Carlo analysis to explore the
optimal size of fixed area plots in developing accurate
forest inventory estimates. This analysis is similar to our
current question but may be difficult to implement in
practice as the plots may already be measured or it may
not be appropriate to change the plot design mid-
sample.
In this case, a 4.6 m2/ha (20 ft2/acre) basal area factor

(BAF) prism was used on each plot. Generally, a 4.6
BAF prism samples about 0.04 ha but this will change
depending on the size of the trees. To test this, the aver-
age of the limiting distances of each tree measured in all
of the variable radius plots was calculated and the med-
ian plot size based on this analysis was determined to
be 0.036 ha. However, larger trees would likely be out-
side of grid cells that are 0.4 ha or smaller. In addition,
there is a greater chance that the location of the plot in
the field would fall outside of the target grid cell due to
the variability in the estimates of location made by the
handheld GPS units. Therefore, grid cells less than 0.4
ha (1/10th acre) were deemed too small.
As the grid cell size increases to sizes larger than 0.4

ha, the variability of the forest within the cell (and
hence the remote sensing data) increases. Because of
this, it was hypothesized that any model that relates plot
metrics to summarized grid cell remote sensing data
will theoretically perform worse as the size of the cell
increases to sizes larger than the plot. For these reasons,

a 0.04 ha cell size was used as it was deemed to be the
smallest cell size that would contain a 4.6 BAF plot and
the location error associated with the handheld GPS
units, and result in minimal within cell variability.
After further analysis following the completion of the

inventory, the 0.04 ha grid cell size may have been
slightly too small to create the strongest relationship
between plot values (e.g. - BA, TPH, volume, carbon,
etc), topographical data (elevation, slope, aspect), and
remotely sensed data (e.g. - orthophoto band intensity).
The optimal grid cell analysis was undertaken after the
inventory was completed as a means to assess if the
pixel size used was the best size and to inform future
projects. The approach outlined below is one method
that could be used to decide on the size of pixels to
divide a forested area into and would ideally be used
prior to the final sample. To determine the optimal grid
cell size, a sample of the remotely sensed data was taken
at each field plot point with a series of increasing circu-
lar areas (see Figure 5a). The mean and standard devia-
tion of all remotely sensed variables for each circular
region for each data set was then calculated for each
size circle. Once the remote sensing derived data had
been summarized to each sample size, an exhaustive
model selection routine was run to find the best model
assuming the best model was defined using Bayes Infor-
mation Criteria (BIC) [73,74]. The BIC was used as the
metric of model performance because it does not
assume that a relationship between explanatory and pre-
dictor values exists and has a larger penalty with larger

Lowest BIC Model R-squared values by Per Ha Plot Metrics 

Plot Size (ha)

R2
Va

lu
e

a)
b)

Figure 5 Optimum Grid Cell Size Results. a) Remote sensing sample units of different size. Red circle represents 0.04 ha. b) Results of lowest
BIC model selection approach using an exhaustive search of all potential model permutations. Dashed red line shows 0.04 ha size.
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data sets [75]. Once the model with the lowest BIC was
chosen for each circular area the amount of variation
explained was graphed relative to each other sample size
(Figure 5b). In this way, an objective approach to model
selection can provide a metric to judge which size grid-
cell is optimal. Based on the results seen here, it seems
the optimal cell size was about 0.08 ha (1/5 acre). This
would be slightly larger than the cell size actually used.

Sampling Intensity by Strata and Plot Location within
Strata
The optimal sampling intensity of the final sample can
be determined using a Neyman allocation of plots (or
an optimal allocation of plots if the plots have variable
costs in different strata) using the traditional approach
to estimating the appropriate sample size [66]. For strata
that do not have an adequate initial sample to have con-
fidence in the estimate of the sampling variability, an
estimate of the variability of the strata can be found
using the remote sensing data for that strata compared
to the other strata. In this case, using the models devel-
oped from the initial strata to populate the cells of the
under-sampled strata an estimate of the population var-
iance can be found and used to calculate the optimum
sample size. Plots are then randomly located within the
strata.

Future Directions
Management Planning
Using this new approach will be a significant departure
from how forest planning traditionally proceeds using a
stand based approach. Using a grid-based stratification,
analysis of given forest areas in these small units can pro-
vide more fine-grained information about any given area.
For example, when laying out timber harvest plan bound-
aries, these forest strata can be used to more accurately
understand current stocking and forest conditions and
allow for better layout of plan boundaries and a better
description of pre-harvest conditions and habitat.
Although this stratification approach provides much

higher resolution data in terms of understanding current
forest conditions, there are several challenges to using
this approach. To begin, this grid system does not lend
itself to easy modeling of future management because
the stand structure (400 m2 pixels) are not logical man-
agement units. Secondly, although we have more confi-
dence in the total volume of any given cell across the
property, there may be more variation in the species
composition within a strata type. This is a result of the
fact that total volume, not merchantable volume, was
the variable whose variation was optimized during the
creation of strata. In future efforts, both total volume
and merchantable volume should be considered when
creating strata boundaries.

Sampling of Harvest or Disturbance
As mentioned above, this strata system provides a highly
flexible and accurate picture of current forest condi-
tions. Moving forward, as areas are harvested or
undergo natural disturbance however, sampling will
revert back to a more traditional harvest area (stand)
based approach. The reason for this is twofold. First, the
cost of collecting new remote sensing data annually pre-
vents the collection of the necessary data to drive this
stratification process. Second, the known THP bound-
aries or disturbance events can be used to generate
more accurate stand boundaries. Therefore, future sam-
pling will proceed by first delineating the disturbed area
and then sampling within this area to estimate the
standing forest stocks post disturbance.

Ecological Monitoring
We anticipate that the canopy height model will be used
in the future to generate a revised Northern Spotted
Owl (NSO) habitat model to assist in management of
the NSO. One of the benefits of this small grid system
is that the final plot data can also be used to develop
full parametric models for any variable of interest. In
some cases (e.g. canopy cover), models are not required
as the variable in question is measured directly by the
LiDAR data. In this case, the canopy cover found in
trees greater than 28 cm (11in) DBH will be modeled to
inform the classification of NSO habitat [76] (tradition-
ally this classification was based on lower resolution
ocular estimates).

Pre-Aggregation for Process Modeling
Hawbaker et al. [62] show that there is a need for ALS
to be leveraged across larger landscapes and that ALS
can help to create more accurate estimates of biophysi-
cal variables at a landscape scale by helping to better
define the sampling design used. The method of sam-
pling and stratification outlined in the following section
can also be used to both validate process models and to
serve as a pre-aggregation framework across a large
landscape. Although this method uses ALS and optical
remote sensing data with continuous coverage across
the landscape it could also be applied to larger scales
using a variety of data sources with or without full cov-
erage. Specifically, by running models based on a small
set of strata instead of in each grid-cell across a region
much more efficient and rapid estimates of ecosystem
state can be generated.
Lefsky et al. [32] have shown the value of using ALS

combined with Landsat data to construct independent
estimates of landscape net primary productivity and net
ecosystem productivity to compare with light-use effi-
ciency models or biogeochemistry models. Their work
used remote sensing data collected over time to detect
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change. The strata system developed here will serve as
the basis for future biogeochemistry model runs that
will also attempt to better estimate ecosystem carbon
fluxes at the GRF.

Conclusions
The method described below not only provides a cost
effective and flexible approach to stratifying a forest but
also has been designed and applied in the context of the
requirements of existing forest carbon project protocols.
This is highly valuable given that monitoring, reporting,
and verifying carbon stocks and fluxes at a project level
is the single largest external cost of a forest carbon off-
set project. Although currently the use of LiDAR
approaches for smaller scales still is not cost effective,
using a method like this one at scales larger than 10,000
ha (25,000 acres) may pay for themselves by reducing
the cost of the field inventory required.
Additionally, the use of both parametric approaches

(to develop models from the initial sample) and non-
parametric approaches (to partition the variables of
interest into strata) provides more power to determine
the optimum sampling intensity and location across a
large ownership. Furthermore, the 2 stage sample allows
for the optimum grid cell size to be found.
For management decisions, this ALS and optical

remote sensing stratification design and high-resolution
grid allows for more accurate estimates of volume at
any scale larger than a 0.04 ha grid cell (1/10 acre). This
new strata layer and the data associated with it will
serve as a baseline of forest conditions against which
future management at the Garcia River Forest can be
compared and assessed. Additionally, because of the
flexibility built into this method, it can be scaled to
much larger or smaller spatial extents. This is valuable
for planning both local and larger scale ongoing man-
agement and monitoring activities.

Methods
Study Site
The Garcia River Forest (GRF) project is a 9,623 ha
(23,780 acre) forest located in Mendocino County, Cali-
fornia northwest of the town of Boonville. This forest is
owned by The Conservation Fund (TCF) and is pro-
tected by a conservation easement held by the Nature
Conservancy (TNC). The goals of the project are to
conserve and restore highly productive and biologically
diverse forests and streams, and to implement sustain-
able forest management practices that support the local
economy [77]. This region is historically dominated by a
mix of redwood (Sequoia sempivirens)and Douglas-fir
(Pseudotsuga menziesii) trees but due to decades of
industrial timber management and intensive harvesting
of this forest there is now a higher than natural amount

of Tanoak (Lithocarpus densiflorus) in traditionally con-
ifer dominated stands.
Due to the past management of the GRF, most stands

have a mix of young 2nd or 3rd growth redwood and
Douglas-fir trees with high proportions of tanoak. Most
areas are heterogeneous within stand boundaries and
these conditions are the norm across the full ownership.
Past management consisted mostly of “thinning from
above” - removing the larger, better trees from most
stands - and as a result most stands are made up of
small, young trees.
Because of the state of the forest today, it is difficult

to use a traditional stand mapping approach to delineate
areas that are substantially similar. The result of apply-
ing the traditional air photo interpretation approach to
stand mapping in this forest resulted in the creation of
large stands that have high degrees of within stand
variability and don’t always relate to logical management
units (see Figure 2).

Field Data
2009 Data (used for comparison to 2010 stratification
results)
The existing inventory consisted of plots installed over
several years using several different cruising protocols.
Both variable radius plots and fixed area plots were
installed across the property from 1999 to 2009. Most
recently (2006 to 2008), all cruising occurred on a 400
by 400 meter (20 by 20 chain) grid that covered the full
ownership using 4.6 Basal Area Factor prisms (Table 2).
The complete inventory from 1999 to 2009 was grown
forward to 2009 using the Forest Projection and Plan-
ning System growth and yield model to compare prop-
erty level estimates in 2009 to the new stratification
method in 2010. However, only plot data from 2008 and
2009 was used to compare individual stand level esti-
mates to aggregated pixel estimates (see table 5).
The old stand layer was a traditional timber stand typ-

ing done by head’s up digitizing stand boundaries using
color imagery (acquired in 2004) of the forest. Each stand
was then placed within a strata that described the domi-
nant tree size and species based on the professional judg-
ment of the land manager. The old strata types had 3
fields: a 2 digit species code that described the dominant
species or species mix, a 1 digit size-class code that
described the dominant tree size, and a 1 digit canopy
density code that described the degree of canopy closure.
2010 Data (used for stratification)
The 2010 inventory data was collected between June
and September of 2010. It consists of 810 variable radius
plots that use a 4.6 m2/ha (20 ft2/acre) basal area factor
(BAF) prism to measure trees at least 14 cm (5.5 inches)
DBH. All plots have height measured on all trees (both
live and dead) that are tallied in the variable radius plot.
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In addition to the trees measured in the prism plot,
there is a 0.04 ha (1/10th acre) circular plot for unders-
tory vegetation, a 0.004 ha (1/100th acre) plot to mea-
sure regeneration (trees less than 14 cm DBH), and a
30.5 m (100 ft) transect to measure down woody debris.
Table 4 summarizes the current inventory data and the
past inventory data. The past 2009 inventory and stand
layer was used as a baseline against which to compare
the new 2010 ALS based stratification and inventory
system.
The field sampled plots for the preliminary sample

(199 plots) were a random selection of a 400 m by 400
m (20 by 20 chain) grid. Table 6 lists the summary sta-
tistics for the preliminary sample.

Remote Sensing Data
Both color-infrared imagery and LiDAR data were col-
lected for the full property (Table 7). The color-infrared
imagery has 0.6 meter (2 foot) resolution with horizontal
accuracy less than 1 meter. The raw LiDAR returns
range from 2.5 to 27 returns per square meter with at
least 5 returns per square meter for forested areas. The
LiDAR data exceeds 15 cm of vertical accuracy and 50
cm of horizontal accuracy. The LiDAR returns were
summarized to make a 1 square meter digital elevation
map and a 0.5 square meter canopy height model. The

CHM is gridded to 0.5 m2 and based on the interpolated
“highest” return within each pixel. In addition to these
grids, the LiDAR data were used to generated a crown
polygon layer for the full GRF. The crown polygon layer
was created using a watershed transformation algorithm
applied to the CHM that segmented individual tree
crowns that are isolated in height from adjacent regions.

Description of the Method
Data Summarization to 400 m2 pixels
The first step before any analysis, inventory, or stratifi-
cation could occur was to summarize all of the remote
sensing data to the 400 m2 grid cells. This involved find-
ing the average and variance of all of the remote sensing
data sets (e.g. CIR, RGB, canopy height, crown polygons,
topography variables - slope, aspect, elevation, and a
whole suite of other variables derived from the remote
sensing data in both the spatial and frequency domains).
The complete set of variables used for the analysis and a
brief description of them are listed in the appendix.
The source data for the cell summaries used in the

stratification come from two passive image datasets and
summarized LiDAR. The three image sets (CIR, RGB
and CHM) were processed with MATLAB’s image pro-
cessing toolbox [78]. The image processing routines
work in two domains; the spatial, and the frequency
[79]. The pixels from the image data sets are about 0.6
meters on a side. The CHM is treated as a gray scale
image where height above the ground is scaled to the
gray scale.

Initial Plot Installation
To develop the final stratification, a set of “training”
field plots were installed to find the relationships

Table 7 Summary of Remote Sensing Data Collected in 2009

Color Infrared Light Detection And Ranging

Acronym CIR LiDAR

Date
Collected

7/1/2009

Source Fixed-wing aircraft

Instrument Digital Mapping Camera from Zeiss/
Intergraph Imaging

ALTM Gemini from Optech Incorporated

Scale Full ownership

Projection North American Datum 1983 UTM zone 10N

Resolution 0.6 meter 5 returns/square meter, 24° field of view, 0.44 postings/square meter.

Spectrum visible and near-infrared (380 nm to
2500 nm)

near-infrared (760 nm to 2500 nm)

Accuracy Horizontal accuracy sub 1 meter Horizontal accuracy sub 50 cm Vertical accuracy sub 15 cm

Data Form 4 bands: red, blue, green, and near-
infrared

Discrete Waveform with classified returns (ground, mid-canopy, upper-canopy)

Products Ortho-rectified 4 band CIR All and first return LiDAR (raw data) 1 m2 Digital Elevation Model (DEM) 0.5 m2 Canopy
Height Model (CHM)Crown Polygon Layer

Table 6 Initial 199 Plot Summary Statistics

Variable Min Mean Max

BA (m2/ha) 0 40.73 116.1

TPH (Trees Per ha) 2 2,339 14,944

% conifer BA 0 56.6 100

Average height (m) 7 29 62
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between plot data and the cell data (e.g. volume, carbon,
basal area). To do this, an initial set of 199 plots were
installed across the GRF. A random sample of points
located at the intersections of a 400 m by 400 m (20 by
20 chain) grid was chosen to cover a broad spatial area.

Variable Reduction using Principle Component Analysis
(PCA)
The 400 m2 cell data was summarized using principle
component analysis to reduce the number of variables.
Factor analysis was used to determine how many of the
principle components should be retained [80]. Table 8
lists the amount of variation explained by the first eight
and the next eight principal components in the each of
the image datasets. Based upon the reduction in
explained variance and the need to keep the preliminary
sample small, the first eight component vectors were
selected to represent the data sets in the preliminary
sample.
The original optical data consisted of 4 bands of data:

blue, red, green, and NIR reflectance values. Although it
would be possible to analyze this data by combining all
4 bands into one image, instead this optical data was
used to create two images: a color-infrared (CIR) image
and a Red-Green-Blue (RGB) image. The CIR image
combines the red, green, and NIR values. There are two
reasons why the red and green bands were included in
both the CIR and RGB datasets: 1) to check that the
atmospheric correction was applied correctly and 2) to
have finer control of the linear combination of the data
when conducting the analysis.
Since two of the color bands (red and green) are pre-

sent in both the CIR and RGB image data, a correlation
analysis was conducted to determine the amount of
overlap between the principal components of the two
datasets. The Pearson correlations with p-values less
than 0.05 have an asterisk in Table 9.
A quick scan of Table 9 shows that, as expected, some

of the principal components are highly correlated. This
correlation reduces the efficiency of variable screening
methods applied to this data, meaning that more plots
will be required to achieve the same level of certainty.
The impact of the correlations was examined by repeat-
ing the parameterization of the models described below
with both data sets separately and then both together.

Parameterization of Models to Relate Remote Sensing
Data to Initial Inventory
The data collected in the first 199 plots was then corre-
lated to the reduced set of remotely sensed variables
found using the PCA. Several models were built that
related remotely sensed data to the measured plot data
in each sampled 400 m2 cell. However, only the BA
regression model, multiplied by each cell’s average
canopy height, was used by the Tabu Search Algorithm
to develop the initial strata. The BA model was then
used to predict the BA in all of the 240,410 400 m2 cells
across the full ownership. The .5 m2 resolution Canopy
Height Model (CHM) was averaged across each 20 by
20 m pixel and used to estimate the average canopy
height in each pixel (no model was required as this is
directly measured by the LiDAR data).
Stepwise procedures have been found to produce poor

variable screens [81]. This is partially due to the
repeated comparisons not representing the proper elimi-
nation probabilities [82]. However there are other pro-
blems with the method such as the parameter estimates
being biased high, and the standard error of the esti-
mates being too low. This results in F and chi-squared
statistics not having the desired distributions [83]. Based
upon this the Lasso method [84] was used for the vari-
able screening of the predictive models. The Lasso is a
penalized least squares method which selects a set of
regression coefficients (bLasso) as the coefficients that
minimize the following equation:

β̂Lasso = argminβ
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In the above equation, y is an n-length vector of the
response variables; X is an n by p matrix of predictor
variables. b0 and bj are the standard regression intercept
and coefficient vectors while the last term is a penalty
term applied to each coefficient - lambda is the penalty
multiplier that is applied to each estimated coefficient.
To ensure that no single predictor swamps the effects

of others, the matrix of predictors (X) is centered and
scaled, and then l is chosen by cross-validation. This
means that a portion of the plots are held back from the
regression and these plots are then predicted by the
resulting regression. The Lambda value is iteratively
adjusted to produce the lowest prediction error of this
cross-validation. The Lasso serves as a variable selection
methodology by selecting few predictors thus alleviating
problems attendant to having many potential predictors
compared to the number of observations. Furthermore,
since the Lasso tends to select only a few of a set of cor-
related predictors, it also helps reduce problems with
spatial correlation [84].

Table 8 Principle Component Decomposition of the
Imagery Datasets

Image
set

Variance explained by first
eight

Variance explained next
eight

RGB 76.00% 13.40%

CIR 75.10% 13.70%

CHM 72.60% 14.70%
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Final Stratification Using Supervised Classification
Based on the predictions of the BA model described
above, an optimal binning process [85,86] was used to
create bins (strata) for each cell based on the product of
A and height. The stratum for each cell was determined
by minimizing the amount of variation of the product of
BA and height in each strata. The product of BA and
height is highly correlated to volume and therefore cells
within a given strata have similar volume totals. This
classification method is considered supervised since it is
driven by the initial inventory data collected across the
GRF.
Once the supervised classification was completed, to

prevent any strata from being less than 4.05 ha (10
acres) in size, an algorithm was applied to swap grid
cells that were on the “edge” of each strata into neigh-
boring strata (considering the nearness according to BA,
height, Trees Per Hectare (TPH), and % conifer BA).
The goal of this algorithm was to minimize the variation
covered within a given strata while reducing the total
number of strata.

Selection of Remaining 611 Sample Plots Based on Final
Stratification
The final 611 plots were randomly placed within each
final stratum in proportion to the variability in product
of BA and height. This sampling design is a classic post-
stratification design and therefore uses stratified random
sampling estimators [66,87].

Appendix - Variables Used
Topographic Variables

1. Average elevation
2. Variance of the elevation of the cell.
3. Average aspect
4. Variance of the aspect of the cell.
5. Average slope
6. Variance of the slope of the cell.
7. A measure of the difference between the actual
topography of the cell and a plane joining its corners.

Crown Segment Variables
1. Number of polygon centroids within a cell
(pcount).
2. Average of the maximum height above the ground
for the polygons (cell height).
3. Variance of the maximum height above ground
for the polygons.
4. Crown closure as the percentage of the cell area
covered by polygons.
5. Curvature of the cell in relation to the eight near-
est neighbor cells (NLN).
6. Average LiDAR first return intensity for the cell.
7. Variance of the LiDAR first return intensity for
the cell.
8. Average intensity of the infrared band of the CIR
data fused to the polygons.
9. Variance of the intensity of the infrared band of
the CIR data fused to the polygons.
10. Average intensity of the red band of the RGB
data fused to the polygons.
11. Variance of the intensity of the red band of the
RGB data fused to the polygons.
12. Average intensity of the green band of the RGB
data fused to the polygons.
13. Variance of the intensity of the green band of the
RGB data fused to the polygons.
14. Average intensity of the blue band of the RGB
data fused to the polygons.
15. Variance of the intensity of the blue band of the
RGB data fused to the polygons.
16. Ratio of the infra-red to red bands.
17. Normalized difference vegetation index(NDVI =
(IR - red)/(IR + red)).

Image Variables
Image set variables consist of two types of analysis; spa-
tial and frequency. Spatial analysis quantified the rela-
tionships between the pixels based upon their location
with respect to one another. Frequency analysis

Table 9 Correlation Analysis between the CIR and RGB Principle Component Datasets

PrinComp RGB1 RGB2 RGB3 RGB4 RGB5 RGB6 RGB7 RGB8

CIR1 0.925* -0.128 -0.418* 0.137 -0.144* -0.282* -0.011 -0.08

CIR2 -0.072 0.977* 0.091 -0.067 0.064 -0.237* -0.034 -0.048

CIR3 -0.09 -0.243* 0.158* 0.736* -0.1 0.029 -0.252* 0.068

CIR4 -0.273* 0.068 0.891* -0.185* -0.189* 0.382* -0.328* -0.018

CIR5 -0.249* 0.101 0.371* -0.254* 0.931* 0.123* -0.11 0.0002

CIR6 -0.226* -0.201* -0.079 -0.237* -0.206* 0.840* -0.056 0.087

CIR7 0.052* -0.019 -0.378* -0.041 -0.009 -0.319* 0.890* -0.084

CIR8 -0.170* -0.008 0.066 -0.051 0.06 -0.177* 0.337* 0.880*
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characterizes the spectral characteristics of the pixels
both in relation to one another and to standard fre-
quency distributions.
There are no known relationships between these sum-

mary variables and the structural characteristics of the
vegetation from which the light was reflected. This is an
intriguing line of research but time has not yet been
allotted for its pursuit. The CHM was treated as a grey-
scale image for this analysis.

Spatial Domain
1. Image profile analysis consisting of summaries of
the eight vectors originating at the center of the
image and radiating to each corner and the middle
of each edge. This includes the mean, variance, med-
ian, skewness, kurtosis, entropy, mean absolute
deviation, median absolute deviation of the pixels on
the profile.
2. Image pixel analysis, the pixel based mean, var-
iance, median, entropy, mean and median absolute
deviation from a unit vector.
3. Histogram analysis of the image.
4. Sum of the Hough lines within the image. This
has been used to identify plantations, and roads.
5. K-mean clustering of the color bands in the
image.
6. The ratio of the number of pixels in two color
groups is compared using a quadrant analysis.
7. Number of cluster centers arising from the first
group from the quadrant analysis.
8. The fraction of shadow.
9. The values of a three parameter Weibul fit to the
image intensity histogram. The number of local
maximum points and the location of the first three
local maximums in a three dimensional histogram
constructed in l, a, b color space.
10. The correlation, contrast, busyness, and texture
strength of a neighborhood grey level difference
matrix.
11. Neighborhood occurrence test based on eight
offsets and compared with the Spectral Information
Divergence.
12. Contiguous region analysis including the average
area, eccentricity, extent, orientation, and solidity of
two size classes of blobs.

Frequency Domain
1. The ratio of the geometric mean to the arithmetic
mean of the frequency space image.
2. Comparison of a vector of texture based proper-
ties such as contrast homogeneity correlation and
energy using the gray scale co-occurrence matrix for

a fixed diagonal offset on an image to a spectral
information divergence.
3. Comparison of a vector of texture based proper-
ties such as contrast homogeneity correlation and
energy using the gray scale co-occurrence matrix for
a fixed diagonal offset on an image to a spectral
angle measure.

Reduced variable set
1. CIR1-CIR8 the first eight principle components of
the color infrared image
2. RGB1-RBG8 the first eight principle components
of the true color image
3. LI1-LI8 the first eight principle components of the
canopy height image
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