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1. Motivation
There is an urgent need to develop carbon monitoring capabilities at fine scales and high accuracies for a variety of applications such as climate treaty verification (for activities such as REDD+) and for better understanding the effects of changes in land use and climate on the global carbon cycle. Carbon monitoring data sets furthermore are essential for initialization of prognostic carbon models,  required for the development of sound policy. Aboveground biomass dynamics is a key element in this area. To date there have been large variations in data, methods and models, and frameworks for uncertainty analysis are either missing or poorly developed. As a result it has been difficult to assess U.S. national carbon stocks in a stable and transparent fashion at the required resolutions and accuracies.
The U.S. Congress recently mandated NASA to initiate work towards a Carbon Monitoring System (CMS) [NASA, 2010]. The objectives of the CMS project are to: (1) Develop prototype national biomass data products for monitoring, reporting and verification of carbon stocks and changes (MRV), and: (2) Demonstrate NASA readiness for MRV using existing in situ and satellite observations. Two pilot studies were initiated; one focused on an integrated emission/uptake flux product, and the other on aboveground biomass at continental and local-scales.  The focus of this report is to provide an overview of our local, county-scale mapping efforts for the CMS project thus far.

2. Biomass Pilot Project
[image: ]The Biomass Pilot Project is focused on quantifying terrestrial vegetation carbon stocks for the U.S. as well as globally. There are two approaches being implemented. The first is a continental (top-down) approach using remote sensing data products to produce a U.S. biomass map at moderate scales (250 m to 1 km). The second is a local scale (bottom-up) approach that utilizes fine-scale lidar and other remote sensing data to map biomass at 30 m resolution wall-to-wall for select U.S. counties. The objectives of this local scale work are to: (1) develop remote sensing protocols that fuse available remotely sensed observations with existing and new field data; (2) provide accurate validation test areas for the continental-scale biomass work, and: (3) demonstrate efficacy for prognostic ecosystem modeling. Figure 1. Nested scales of observation are fundamental to a comprehensive CMS which requires both top-down and bottom-up analysis. Local mapping is critical for project valuation, policy and management activities. 

3. Methodological Approaches
Our approach (Fig. 2) combines new field data collection with existing, wall-to-wall lidar mapping of each county, along with existing radar and optical data. The field data were used with allometry to provide field biomass estimates.  The remote sensing data were then used with a subset of these field data in two ways. The first was to drive empirical estimation models. These included machine learning methods (such as random forests) as well as traditional statistical models. The second method uses these data to initialize an ecosystem model (the Ecosystem Demography model) to make estimates of aboveground carbon and flux.  
[image: ]Figure 2. Overall methodological flow of local-scale CMS activities and the relationship to national mapping efforts.
Two counties in Maryland, U.S. were chosen as the focus areas of our research. Field data included both existing measurements that were part of the U.S. Forest Service Inventory and Analysis network (FIA) as well as 300 new variable radius plots. These plots were distributed using a model-based stratified sampling approach based on land cover class and lidar height class (Fig. 3 and Fig. 4). The existing lidar data were obtained in 2005 at a point density of about 1 point per square meter. Height percentiles and other metrics were calculated from these. Additionally, ALOS/PALSAR radar data and Landsat time since disturbance products were included as predictive variables.

[image: Howard5.jpg][image: ]Figure 3. Field plots were placed into each county according to model-based stratification based on NLCD landcover classes (left) and height classes (right). About 60 new plots were placed in each landcover stratum, and distributed equally between height classes in that stratum (see Fig 4.).Figure 4. Each 30 m grid cell over each county was classified into one of the strata described in Fig. 3. A set of 300 points was randomly selected (60 in each landcover class) and sampled for biomass. Because of the suburban nature of the counties points could fall outside of forest areas, such as backyards, road medians, and agricultural lands. 


At each plot, prisms were used to identify trees within and outside of the plot (hence the plots had variable radius). This resulted in about 7-10 trees for inclusion and for which species and dbh were noted. Jenkins equations were then used to obtain allometric aboveground biomass and carbon. The USFS additionally created 20 new FIA-style plots and another 20 variable radius plots for comparison. These were in addition to the existing FIA plot network in the county (which is quite limited).
3.1. Remote sensing data sets
Small-footprint lidar
The primary remote sensing data set was the small footprint lidar acquired by each county. These data were flown about 5 years earlier and are part of continuing efforts by the state for providing up-to date floodplain mapping. These data were obtained wall-to-wall at a point density of about 1 point/m^2. The first and last return data were then used to derive various lidar percentile height metrics. These percentiles were aggregated using a 2m x 2 m forest/non-forest cover map for each 30 m pixel in the counties (Fig. 5).
[image: ]
Figure 5. Lidar height metrics were derived using the first and last return data and a 2m x 2m forest/non-forest map. Heights for forested areas within each 2m pixel were then aggregated to create a percentile height distribution within each 30 m pixel, from which height metrics were derived.
Landsat time since disturbance
Disturbance is one of the one most important factors affecting biomass dynamics. Knowing the time since disturbance provides important information on successional state (and therefore sequestration potential, especially in carbon models) and also for biomass loss from forest patches disturbed after lidar data collection.  A 30-year time series of Landsat data were used to create the disturbance mosaic shown in Fig. 6.

[image: md1_hh_HV_HHoverHV_averaged.tif][image: ]Radar dataFigure 6. Landsat time since disturbance for a portion of Howard County in the I-95 Corridor. Because of the suburban nature of the area, much of the forest is fragmented and shows the effects of expansion.  Such time-series are critical to any CMS.

Radar provides all-weather, wide-area coverage and potentially useful information on ecosystem structure and biomass, especially for lower biomass areas. We processed PALSAR data from the ALOS platform for 5 dates in 2010. These data were geocoded, calibrated and mosaicked to produce a resulting set of images at 30 m resolution matching our baseline grid mapping for the counties (Fig. 7). 
3.2. Statistical approaches
We tested two statistical methods, ordinary least squares regression (OLS), and Bayesian model averaging (BMA).  We employed random forest (RF) and quantile random forest machine learning algorithms (QRF). We also evaluated an experimental forest-growth model.
OLS and BMA
We had available many (over 50) predictor variables that could be used in a regression approach. Choosing a smaller number of subsets is a challenging problem, but is important for creating stable models. We limited our regression models to about four variables and employed two methods to achieve this parsimony. The first is a method called “all-possible subsets” that iteratively tries all combination of variables and chooses the ones that provide the most explanatory power and stability. A second method, called Bayesian Model Averaging, uses a Bayesian approach to pick variables.Figure 7. PALSAR radar mosaic for Maryland study areas.

Random forest and Quantile Random forest
Random forest is a now well-known machine learning procedure widely employed in biomass estimation. It suffers from a common problem of underestimation of high biomass values. To overcome this limitation and to provide robust error bounds, we employed a quantile random forest approach. Such an approach predicts not the median value (as in normal random forests) but a particular quantile. This allows for error bounds (say 5% and 95% quantiles) to be predicted, as well as high biomass values (large quantiles). As far as we know this is the first time such an approach has been used for biomass estimation.
4. Carbon Modeling Efforts
The ability to evaluate future carbon states rests firmly in the domain of physically-based ecosystem models. Such models predict not only biomass, but carbon flux now and in the future. To be effective these models require accurate initialization data, most importantly, current forest status (age and structure). In addition, information on climate and soils is also required. We used the Ecosystem Demography model (ED) for our efforts here. No ecosystem model has been run at the resolution of our county data (1 ha) over such a large area (and indeed the computation effort was equivalent to running ED globally at coarse resolution).
[image: ]Climatological and soil data were obtained and processed for the counties. Then a series of experiments was performed to evaluate the effect of increasing resolution and adding successional state and structure to the models, that is going from what is basically a potential vegetation model to one that is predicting actual carbon status at the resolution required.  A summary of these experiments is given in Fig. 8.Figure 8. ED was run using a variety of input layers at varying resolutions, with V1.6 the most sophisticated.




Use of the ED model also required detailed model species allometry refinements to run at such high resolutions for the mid-atlantic region. This required a considerable validation effort (Fig. 9).
5. [image: ]ResultsFigure 9. ED species curve validations. DBH/biomass for individual species curves are shown. ED uses a generalized allometric equations to represent different functional types. The ED model correctly captured the correct relationships after adjustment for use in CMS.

5.1. Empirical modeling
We compared our four models (OLS, BMA, RF & QRF). Results were similar, with RMSE values of 79, 75, 66.5 and 63 Mg/ha for OLS, BMA, RF and QRF, respectively (Fig. 10). Total county biomass (Fig. 11) compared well in all methods. Results also compared well with estimates from FIA for forested lands (e.g 13.6 Tg for CMS vs 13.5 Tg). However, FIA estimates for non-forest (e.g. urban and suburban areas) were much lower than CMS estimates (2.1 Tg vs. 5.6 Tg) (Fig. 12). Maps of biomass from each method were generally quite similar, but showed some variation at local scales (Fig. 13).



[image: ][image: ][image: ]
Figure 11. Results from four different empirical approaches (see Fig. 10). Although all models are similar, QRF performs significantly better than OLS approaches.
Figure 10. Results from four different approaches to biomass estimation. All models performed similarly however QRF is the only one that produces an unbiased estimate of higher biomass regions (essentially pushing the underestimates shown in the oval circle up to the 1:1 line).

[image: ]
Figure 12. Comparison of one CMS estimate (BMA) of biomass with USFS-FIA plot estimates. Model and USFS results are essentially identical of forested areas (that is areas classified as forest by NLCD), but diverge strongly for non-forest areas. This is a reflection of the fragmented and suburban nature of the counties and shows that non-forest areas are a significant pool of carbon that must be accounted for properly.
[image: ]
Figure 13. Above ground biomass for two Maryland counties. Map shown on left was generated using the BMA approach. Insets show detail of maps generated using different methods and visible imagery of the inset (bottom right).
Error maps
Providing estimates of uncertainty is critical for CMS. Both OLS and QRF provide clear and theoretically sound bases for providing such maps. Shown below (Fig. 14) is one such example (generated for BMA). For any 30 m pixel in the counties, the 5% and 95% confidence interval is known. 
[image: ]
Figure 14. Error maps from BMA biomass predictions. Note that the lower and upper bound maps give the 95% confidence interval for any particular 30 m pixel. 
5.2. Radar modeling
[image: Md_NC_biomass_slides.pdf][image: Md_NC_biomass_slides.pdf]Biomass was also estimated using radar data alone. These results are similar to other radar modeling efforts, with saturation at high biomass (Fig. 15)Figure 15. Relationship between PALSAR backscatter and biomass. Temporal averaging strengthens the relationship but still saturates at higher levels of biomass. Radar metrics were not picked by regression and machine learning models (mainly because of domination by lidar metrics).

5.3. ED carbon modeling
The ED model was run for the cases outlined earlier, from the simplest (and in theory least accurate) realization using no canopy structure and 1 degree climate and soil inputs, up to the most refined realization, using actual canopy heights from lidar, Landsat disturbance, 1 ha soils, and 0.25 degree climate. The results are summarized in Fig. 14 and maps of biomass are shown in Fig. 15.
[image: ]
Figure 14. Results from ED experiments. Using no height initialization and coarse soils and climate (V1.0 and left Fig. 15) results in far different biomass estimates relative to using lidar height initializationand fine-scale soils and climate (V1.6 and right Fig. 15).

Figure 15. ED biomass results for V1.0 (left) and V1.6 (right). Clearly, carbon models must use high-resolution inputs to be effective for most CMS activities.

[bookmark: _GoBack]
6. Considerations and Conclusions
Given the staleness of our lidar data and our limited field sampling, our results were quite encouraging. We conclude the following: (1) Existing lidar data sets are useful for biomass mapping in the U.S. at local scales, even if they are several years old and of low point density; (2) Rapid field-survey methods are accurate and appropriate; (3) Choice of statistical estimation method is not critical, though some methods appear more accurate; (4) High-resolution mapping is required to accurately estimate non-forest biomass; (5) County-based lidar data sets should form the basis of local CMS efforts, both in the U.S. and abroad; (6) Carbon modeling is critical but must have appropriate input data; in particular high-resolution canopy structure data and soils.
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Relationship between live AGB and HV backscatter in Mixed Forests
from temporal averaging of images in Maryland
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Version (drywtkg) (TgC) (kg C/m2) (Mg/ha)
1.0  1degclimldegsoil 4.90E+10 24.51 14.67 293.48
1.1 1deglim90msoil 5.53E+10 27.66 16.56 331.31
1.3 0.25clim90msoil 6.87E+10 34.35 20.57 411.30
1.4  1degclim90msoil(mask only) 3.87E+10 19.40 11.61 232.34
1.5  1degclim90msoil (mask+lidar) 4.54E+10 22.70 13.59 271.87

1.6 0.25clim90msoil (mask+lidar) 3.29E+10 16.46 9.86
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