High Resolution Ecosystem Modeling as Part of a Robust Carbon Monitoring System

A.H. Armstrong¹, G. C. Hurtt¹, R. Dubayah¹, J. Fisk¹, N. Pinto¹, J. Suarez¹, S. Franks¹, O. Rourke¹, S. Flanagan¹

1University of Maryland, College Park, MD

UMD CMS Contributions

Study Objectives

The Ecosystem Demography (ED) Model: Incorporates fine-scale processes into a global ecosystem model.

Our Objective: Develop a framework to model vegetation dynamics at 90m resolution over large geographic areas

2 Key Study Questions:

- 1) What are the high resolution carbon stocks and fluxes (past, present, future) over the study domain?
- 2) How do different input datasets improve and/or constrain model estimates?

Methodology

ED Existing PFT Verification

$$IVI_i = (A_i \times 100) + (F_i \times 100) + (D_i \times 100)$$

where:

A _i	=	Abundance _i =	stem count of species i		
			stem count of all species		
F _i	=	Frequency _i =	occurrence of species i occurrence of all species		
D _i	=	Dominance . =	basal area of species i [m ² /ha]		
		bommance i	total basal area [m ² /ha]		

(Curtis and McIntosh 1951; Kent and Coker 1994)

Oak and Maple Aboveground Biomass as a Function of DBH

High Resolution ED Model Experimental Approach

ED Version	1º Climate	0.25° Climate	1º Soil	1ha Soil	Lidar	LandSat Forest/ Non Forest Mask				
Version 1.x, Abiotic/Technologial Focus: Designing repeatable, robust										
process for running ED at high resolution										
1.0	X		X							
1.1	X			X						
1.2		X	X							
1.3		X		X						
1.4	X			X		X				
1.5	X			X	X	X				
1.6		X		X	X	X				

ED Version 1.0

ED Potential Aboveground Biomass (AGB) for Maryland Counties with 1 degree climate and soil initializations

ED Version 1.5

Lidar initialized ED AGB for MD Counties with 1 degree climate and 90m soil inputs, with nlcd 2006 Forest/Non-Forest Mask

ED Version 1.6

Lidar initialized ED AGB for MD Counties with 0.25degree climate, 90m soil, with NLCD 2006 Forest/ Non-Forest Mask

ED Version	Input Description	Total AGB (dry wt kg)	Total C (Tg C)	Avg AGB (kg C/m2)	Avg AGB (Mg/ha)
1.0	1degclim1degsoil	4.90E+10	24.51	14.67	293.48
1.1	1deglim90msoil	5.53E+10	27.66	16.56	331.31
1.3	0.25clim90msoil	6.87E+10	34.35	20.57	411.30
1.4	1degclim90msoil(mask only)	3.87E+10	19.40	11.61	232.34
1.5	1degclim90msoil (mask+lidar)	4.54E+10	22.70	13.59	271.87
1.6	0.25clim90msoil (mask+lidar)	3.29E+10	16.46	9.86	197.17

Lidar Height Metrics (Dubuyah et al) \neq 220.20

45 Forest - FIA and FIA-like plots (Johnson) \in 180.7

Summary

- 1) Development of technological capacity unprecedented resolution
- 2) High Resolution inputs produced more meaningful biomass values
- 3) Our results highlight the importance of the high resolution product as well as the interactive effects of soils, lidar and forest masking

Future Directions:

- 1. Work in progress further development of enhanced scaling algorithms for increased run efficiency
- 2. Ecological refinement to match high resolution abiotic inputs

Acknowledgements

NASA CMS Contributors and Collaborators CMS Science Definition Team Members NASA GSFC University of Maryland, Department of Geography

